ÂÌñÏׯÞ

Published

Controlled fragmentation of multimaterial fibers via cold polymer drawing

Researcher unlocks nanoscale means of controlling breakage in materials, opens door to next-generation manufacturing.

Share

University of Central Florida associate professor Ayman Abouraddy has unlocked a means of controlling materials at the nanoscale that opens the door to a new generation of manufacturing. Using a pair of pliers in each hand and gradually pulling taut a piece of glass fiber coated in plastic, Abouraddy found that something unexpected and never before documented occurred – the inner fiber fragmented in an orderly fashion.

“While we thought the core material would snap into two large pieces,” said Abouraddy, “instead it broke into many equal-sized pieces.” Featured in the online journal , he refers to the technique as “Breaking Me Softly.”

The process of pulling fibers to force the realignment of the molecules that hold them together, known as cold drawing, has been the standard for mass production of flexible fibers like plastic and nylon for most of the last century. Abouraddy and his team have now shown that the process may also be applicable to multi-layered materials, a finding that could lead to the manufacturing of next-generation materials with futuristic attributes.

“Advanced fibers are going to be pursuing the limits of anything a single material can endure today,” Abouraddy said. For example, packaging together materials with optical and mechanical properties along with sensors that could monitor vital signs like blood pressure and heart rate would enable clothing capable of transmitting vital data to a doctor’s office via the Internet.

The ability to control breakage in a material is critical to developing computerized processes for potential manufacturing, said Yuanli Bai, a fracture mechanics specialist in UCF’s College of Engineering and Computer Science. A co-author on the paper, Bai helped analyze test results on a wide variety of materials, including silicon, silk, gold and even ice.

Robert S. Hoy, a University of South Florida physicist who specializes in the properties of materials like glass and plastic, helped develop a better understanding of what Abouraddy found. Hoy said he had never seen the phenomena, but that it made great sense in retrospect. The research takes what has traditionally been a problem in materials manufacturing and turned it into an asset, Hoy said.

Hoy said that Abouraddy has found a new application of necking — a process that occurs when cold drawing causes non-uniform strain in a material. “Usually you try to prevent necking, but he exploited it to do something potentially groundbreaking,” Hoy notes. The necking phenomenon was discovered by DuPont decades ago, ushering in the age of synthetic fibers and textiles. Abouraddy said that cold-drawing is what makes fibers like nylon and polyester — which are initially brittle — toughen up and become useful in everyday applications.

He notes that only recently have fibers made of multiple materials become possible. That research will be the centerpiece of a $317 Million U.S. Department of Defense program focused on smart fibers that Abouraddy and UCF will assist with. The Revolutionary Fibers and Textiles Manufacturing Innovation Institute (RFT-MII), led by the Massachusetts Institute of Technology, will incorporate Abouraddy’s research findings published in the Nature article.

The UCF research team believes the implications for future manufacturing of smart materials are vast. By controlling the mechanical force used to pull the fiber and therefore controlling the breakage patterns, materials can be developed with customized properties allowing them to interact with each other and external forces such as the sun (for harvesting energy) and the internet in customizable ways. Also, by carefully controlling the loading condition imparted to the fibers, materials can be developed with tailored performance attributes.

Related Content

Carbon Fibers

Cutting 100 pounds, certification time for the X-59 nose cone

Swift Engineering used HyperX software to remove 100 pounds from 38-foot graphite/epoxy cored nose cone for X-59 supersonic aircraft.

Read More
Trends

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Welding

Welding is not bonding

Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.

Read More

Read Next

Natural Fibers

Scaling up, optimizing the flax fiber composite camper

Greenlander’s Sherpa RV cab, which is largely constructed from flax fiber/bio-epoxy sandwich panels, nears commercial production readiness and next-generation scale-up.

Read More
Ketones

Ultrasonic welding for in-space manufacturing of CFRTP

Agile Ultrasonics and NASA trial robotic-compatible carbon fiber-reinforced thermoplastic ultrasonic welding technology for space structures.

Read More
Sustainability

Next-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly

MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.

Read More