ÂÌñÏׯÞ

Published

GE Haliade-X 12 MW turbine blade delivered for testing

The 107-meter offshore wind blade will undergo fatigue testing at the Massachusetts Clean Energy Center’s Wind Technology Testing Center in Boston.

Share

 

Haliade X composite wind turbine blade

Source | GE

 

A blade from GE Renewable Energy’s (Paris, France) Haliade-X 12 MW offshore wind turbine has been delivered to the Massachusetts Clean Energy Center (MassCEC, Boston, Mass., U.S.), where it will undergo a series of fatigue tests over the next several months. The tests, taking place at the MassCEC’s Wind Technology Testing Center (WTTC), will involve the 107-meter blade moving millions of times to validate whether it can withstand more than 25 years of operation at sea.

The Haliade-X turbine is expected to be fully commercialized by 2021.

Haliade X composite wind turbine blade

Source | GE

“This has really been a collaborative effort on the part of the company to be part of solving the challenges associated with the energy transition,” says H. Lawrence Culp, Jr, GE chairman and CEO. “We think the Haliade-X is the right turbine at the right time as the offshore industry globally and particularly here in the U.S. is poised to take off. We're proud Boston is part of this effort, and we appreciate the work the Commonwealth has put forth in laying out the roadmap by which Massachusetts can be a leading developer and user of offshore wind technology.”

“We believe the Haliade-X  has a key role to play in driving the growth of the offshore wind market in the U.S. and globally. Because it is the most powerful machine in the industry, it allows our customers to drive down the cost of wind energy and speed the adoption of clean, renewable energy. We look forward to working with our partners at the Massachusetts Clean Energy Center’s WTTC to put the blade through rigorous testing that will help ensure that it will perform as designed,” says John Lavelle, CEO of GE Renewable Energy’s offshore wind business.

Haliade X composite wind turbine blade

Source | GE

On Oct. 22, the U.S. Department of Energy announced new awards to support wind energy research, development and demonstration projects, which included a grant to MassCEC for equipment upgrades at the WTTC to enable structural testing of 85 to 120-meter long blades.

According to MassCEC, the WTTC currently offers a full suite of certification tests for turbine blade sections up to 90 meters in length. Since opening in 2011, WTTC has run 35 distinct blade testing programs including hundreds of individual blade tests. WTTC is an ISO/IEC 17025 accredited Laboratory and a RETL (Renewable Energy Testing Laboratory) per the IECRE rules and procedures to test wind turbine blades. 

“Massachusetts is proud to have an important piece of infrastructure in the Wind Technology Testing Center that provides the offshore wind industry with an essential tool for groundbreaking innovations in technology,” says Energy and Environmental Affairs Secretary Kathleen Theoharides. “As the only location in North America to offer blade testing and certification at this size and scale, [Massachusetts] looks forward to continued collaboration with wind turbine developers to help this industry meet its full potential in the U.S. market.”

“Offshore wind represents an important energy source as [Massachusetts] works to meet ambitious greenhouse gas reduction targets, and we look forward to working with the industry to drive down costs, improve efficiency and develop of a hub of activity here in Massachusetts,” says Charlie Baker, governor of Massachusetts.

GE Renewable Energy also recently announced that the company has been selected as the preferred turbine supplier by Ørsted and the owners of the Dogger Bank Wind Farm to provide the Haliade-X for 4.8 gigwatts of projects in the U.S. and the U.K.

microwire technology for composites

Related Content

Feature

Life cycle assessment in the composites industry

As companies strive to meet zero-emissions goals, evaluating a product’s carbon footprint is vital. Life cycle assessment (LCA) is one tool composites industry OEMs and Tier suppliers are using to move toward sustainability targets.

Read More
Marine

European boatbuilders lead quest to build recyclable composite boats

Marine industry constituents are looking to take composite use one step further with the production of tough and recyclable recreational boats. Some are using new infusible thermoplastic resins.

Read More
Composites 4.0

ASCEND program completion: Transforming the U.K.'s high-rate composites manufacturing capability

GKN Aerospace, McLaren Automotive and U.K. partners chart the final chapter of the 4-year, £39.6 million ASCEND program, which accomplished significant progress in high-rate production, Industry 4.0 and sustainable composites manufacturing.

Read More
Thermoplastics

Partners recycle A350 composite production waste into adjustable-length rods for MFFD

Herone, Spiral RTC, Teijin Carbon Europe and Collins Aerospace Almere recycle A350 thermoplastic composite clips/cleats waste into rods for the all-thermoplastic composite Multifunctional Fuselage Demonstrator’s crown.

Read More

Read Next

Aerospace

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
ATL/AFP

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More