ÂÌñÏׯÞ

Published

Continuous Fiber Manufacturing blurs the line between 3D printing and AFP

Continuous fiber manufacturing (CFM) is a 3D printing/continuous fiber deposition process patented by moi composites.

Share

Continuous fiber manufacturing (CFM) is the 3D printing/continuous fiber deposition process patented by moi composites (Milan, Italy). The company was established in February 2018 by materials engineer and professor Marinella Levi, design engineer Gabriele Natale and architect Michele Tonizzo. It was spun off from the +LAB, a collaborative 3D printing hub that Levi founded at the Politecnico di Milano.

CFM was patented in 2015 and demonstrated in 2016 through the Atropos project, which involved printing a continuous glass fiber/epoxy propeller blade using a Kuka industrial robot. The blade featured an internal truss and an exterior shell demonstrating both a multiaxial laminate (0°, 45°, etc.) and fiber placement along a nonlinear axis. Moi composites has developed a second-generation system using a Comau robot with a 1.0 × 0.5 × 0.8m height build envelope. “We have also used larger robots with rotary tables and larger build volumes, demonstrating that our technology is easily scalable,” says co-founder Tonizzo. “We currently can print with UV-cure in epoxy, acrylic and vinylester,” he says, “but we are not tied to UV curing.” Glass fiber up to 2400 tex and basalt fiber have both printed very well and moi composites is now working with carbon, though not with UV cure resins. The company can also print with electrically conductive fibers and is producing parts for biomedical, marine, oil and gas, and aerospace applications, mainly using glass fiber. It is also developing a third-generation, all-in-one print head with a system to apply pressure to the fibers, sensors, cutting mechanisms and a milling tool. Tonizzo says this will close the gap between 3D printing and automated fiber placement (AFP). “3D printing does not achieve the performance of AFP, but CFM offers more flexibility. We can already print with fibers 0.25-mm thick and have the ability to create curves and place continuous fibers in the ideal position,” he adds.

Hybrid processing is a concept moi composites has already explored, one of their successes being the Superior lightweight, low-deflection lower limb prosthesis. The prosthesis is made with a printed continuous glass fiber internal core which is then sheathed with a hand-layup, vacuum bag-only cured carbon fiber fabric and epoxy skin. “The whole design reduces deflection and increases customization while significantly cutting cost and production time,” says Tonizzo.

Part of this optimization is produced through the digital design and workflow, which uses Autodesk software with moi composites’ algorithms for stress and path optimization. This is what produces the optimized fiber path for both the structural loads and fiber deposition process.

CFM is open to a variety of materials and design innovations explored by +LAB, including 3D-printed infill patterns with a tunable elastic response, and printing with novel matrices like geopolymers, which behave like concrete. As moi composites continues advancing its CFM technology, will it sell print heads and machines? “Yes, but in the future,” says Tonizzo. “For now, we are producing parts and bringing the technology to the client's facility, using our know-how, print head and software to realize part solutions on demand. We are also seeking investors to further scale CFM machines and processes for commercial market opportunities.”

Read more in the blog | .

Related Content

Prepregs

Carbon fiber, bionic design achieve peak performance in race-ready production vehicle

Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.

Read More
Work In Progress

Active core molding: A new way to make composite parts

Koridion expandable material is combined with induction-heated molds to make high-quality, complex-shaped parts in minutes with 40% less material and 90% less energy, unlocking new possibilities in design and production.

Read More

Reinforcing hollow, 3D printed parts with continuous fiber composites

Spanish startup Reinforce3D’s continuous fiber injection process (CFIP) involves injection of fibers and liquid resin into hollow parts made from any material. Potential applications include sporting goods, aerospace and automotive components, and more.

Read More
Space

A new era for ceramic matrix composites

CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.

Read More

Read Next

Natural Fibers

Continuous Fiber Manufacturing (CFM) with moi composites

Continuous fiber 3D printing using epoxy, vinylester and acrylic with continuous glass, carbon, basalt and other fibers, including deposition along nonlinear curves, is only the beginning.

Read More
Carbon Fibers

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More