New prepreg material designed for advanced radome systems
Park Electrochemical Corp.’s RadarWave materials are said to exhibit transmissivity properties similar to those of higher cost materials used to manufacture advanced radome systems.
Park Electrochemical Corp. (Melville, NY, US) announced on Oct. 15 the introduction of RadarWave, a new family of prepreg materials used to manufacture advanced radome systems for aerospace and defense applications.
The prepregs are available with epoxy or cyanate ester resin systems, and are offered in E-Glass, quartz fiber or high-performance glass, up to 60” wide. The materials are available in thin, lightweight fabrics for flexibility in radome design and layup, and various weave styles are available, says the company. Detailed product data sheets are available at the company’s web site (https://parkelectro.com/aerospace-products/).
Radomes are structural enclosures which protect RF/microwave and other antennas that transmit and receive electromagnetic signals from air, space, marine and ground based platforms. Radomes are constructed with advanced composite materials which are designed and engineered to optimize dielectric performance and minimize electromagnetic signal transmission loss while protecting the antenna and, in some cases, aircraft structural integrity. Increasingly advanced aerospace and defense electronics systems require radomes that are designed and engineered with radome materials necessary to accommodate the technical performance needs of these systems.
According to Park Electrochemical Corp., RadarWave materials exhibit transmissivity properties similar to those of higher cost esoteric materials traditionally used to manufacture advanced radome systems.
Related Content
-
Scaled Composites Model 437 aircraft to be flown for Beacon autonomy testbed
Northrop Grumman subsidiary part of Digital Pathfinder development of stealth aircraft with wings using continuous carbon fiber additive manufacturing and determinate assembly.
-
What you might have missed at Paris Air Show 2025
A surge in defense spending, partnerships in hydrogen propulsion and new combat aircraft agreements, many backed by composites industry leaders, culminated the 55th Paris Air Show.
-
Converting carbon fiber for UHTCMC to 3500°C
Advanced Ceramic Fibers LLC demonstrates ultra-high temperature ceramic matrix composites using SiC and other metallic carbides for applications in aerospace, defense, energy and more.