Whitewater Technology debuts high-performance, recycled carbon fiber paddle range
Paddles consist of high-impact, non-woven composite that combines 40% recycled carbon fiber with a thermoplastic resin system and an aramid puncture-resistant layer for identical weight, strength and stiffness properties to non-recycled products.

Photo Credit: Whitewater Technology
(WT, Greenville, S.C., U.S.), part of the C12 Technology Group, launched in late October it’s debut paddle range featuring high-performance paddles made with 100% recycled carbon fiber.
The range, which features paddles for all disciplines, was designed by leading advanced materials engineer and whitewater kayaker Ollie Wainwright. Using his composites background in the motorsports industry, WT’s first paddles are the result of two years of intensive R&D into the use of recycled carbon fiber in high-performance outdoor and sporting goods.
“As both a serious paddler and materials engineer I had grown frustrated with the lack of a sustainable high-performance paddle option. We’re out there in nature every weekend using a product that ultimately ends up in landfill... so a few years ago we set out to try and change this,” says Wainwright. He acknowledges that he’s pleased with the results and what the WT has been able to accomplish with the sustainable composites’ design.
WT’s paddles reportedly use a custom-made, high-impact, non-woven composite that combines 40% recycled carbon fiber with a thermoplastic resin system and an aramid puncture-resistant layer. The result is a high-performance paddle with identical weight, strength and stiffness properties to a non-recycled product.
Available initially as a pre-order via the WT website in addition to specialty retailers, the range includes paddles for whitewater, touring, fishing, SUP, rafting and canoe with a variety of adjustable length and shaped shafts.
Pre-sale pricing starts at $240 including free shipping, five-year warranty and crash replacement.
Related Content
-
Hybrid process marries continuous, discontinuous composites design
9T Labs and Purdue applied Additive Fusion Technology to engineer a performance- and cost-competitive aircraft bin pin bracket made from compression-molded continuous and discontinuous CFRTP.
-
The potential for thermoplastic composite nacelles
Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.
-
Composites manufacturing for general aviation aircraft
General aviation, certified and experimental, has increasingly embraced composites over the decades, a path further driven by leveraged innovation in materials and processes and the evolving AAM market.