ÂÌñÏׯÞ

Published

NCC launches U.K. initiative to industrialize continuous carbon fiber reclamation

The NCC begins a three-year program to rapidly refine and scale industry continuous carbon fiber recycling, a key solution to net-zero ambitions. Partner collaborations are welcomed to the effort.  

Share

Reclaimed continuous carbon fiber. Photo Credit: NCC

On Sept. 7, the  (NCC, Bristol, U.K.) launched an initiative to industrialize continuous carbon fiber reclamation in the U.K. The three-year innovation program will see a team of composites specialists refine and scale the industrial processes needed to establish a commercial market for reclaimed continuous carbon fiber. With global demand for virgin fiber set to exceed supply by 2025, the NCC believes this could ease pressure on supply chains and see the U.K. take a leading role in defining a new era for composites.

While chopped carbon fiber is already recycled, industrial applications for the material tend to be narrow. Working with B&M Longworth (Edgworth, U.K.) and Cygnet Texkimp (Northwich, Cheshire, U.K.), the NCC successfully trialed and tested processes to reclaim and reuse “continuous” lengths of carbon fiber that retain a higher material performance in May 2022. It is hoped that this will accelerate the creation of three different grades of carbon fiber — “A, B and C” — to support a wider range of applications and reduce the volume of continuous carbon fiber-reinforced polymer (CFRP) material sent to landfills in the U.K. by 50% by 2026.

With lightweight, strong and design-friendly carbon fiber being a key component in everything from aircraft and electric vehicles (EVs), to hydrogen storage tanks and the next generation of super-sized turbine blades, global demand for the material is set to outstrip supply — growing from nearly 100,000 metric tons to around 300,000 metric tons by 2030, the NCC reports. This shortage will have an impact on many sectors striving to achieve net-zero goals.

One of these is the sporting goods market (see “Athletic shoe developed with repurposed thermoplastic waste” and “Flexible carbon fiber plates enable high-performance footwear” for examples). Recycled carbon fiber could help makers of trainers, fishing rods, tennis racquets and bicycles substantially reduce the levels of “embodied carbon” in their products — the amount of primary energy used, or carbon released, from the direct and indirect processes associated with manufacturing. 

The team has developed a challenging route map to industrialization, with the first sprint project expected to finalize in November 2022.

The average running shoe currently has a carbon footprint of approximately  carbon dioxide emissions (CO2e), and manufacturing cars creates between 6,000 and 35,000 kilograms of CO2e per vehicle from basic to . Through trials, the NCC has calculated that using reclaimed carbon fiber reduces material manufacturing emissions from around 29.5 kilograms CO2e per kilogram to 5 kilograms CO2e.

The development of a “second-life” supply chain may also help businesses remain profitable, the NCC says: With supplies of the highest quality virgin fiber likely to be claimed by aerospace and defense, sporting goods firms will need an alternative material to turn to.

“The U.K. leads the world in the industrialization of carbon fiber manufacturing but has struggled to develop the sector,” Enrique Garcia, chief technology officer (CTO) at the NCC, says. “We exported much of our expertise— and even our manufacturing infrastructure — to Japan, which was subsequently able to capitalize on a huge growth in U.S. defense spending in the 1980s and, later, a boom in consumer demand for high-end carbon fiber products. We now have a unique opportunity to drive forward a new market by industrializing the processes required to recycle carbon fiber — it is imperative that we push hard now to establish this capability in the U.K.”

According to Garcia, the NCC is looking to rapidly scale up this collaboration and seek partners who would be interested in accelerating product demonstrators using reclaimed continuous fiber in order to reduce their manufacturing carbon footprint.

The team has developed a challenging route map to industrialization, with the first sprint project expected to finalize in November 2022.

To find out how reclaimed continuous carbon fiber can benefit your business, the NCC suggests emailing lowcarbon@nccuk.com to book a free consultation.

 

Related Content

Hybrid process marries continuous, discontinuous composites design

9T Labs and Purdue applied Additive Fusion Technology to engineer a performance- and cost-competitive aircraft bin pin bracket made from compression-molded continuous and discontinuous CFRTP.  

Read More
Focus on Design

Carbon fiber composite pallet revolutionizes freight industry

LOG Point Pallet fuses advanced materials with innovative design and manufacturing to improve supply chains worldwide.

Read More
Pressure Vessels

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Plant Tours

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More

Read Next

Pressure Vessels

NCC digital design trial speeds up composite pressure vessel proof of concept

Application of multi-disciplinary optimization (MDO) techniques determines optimal composite hydrogen pressure vessel design five times faster, says the NCC.

Read More
Thermoplastics

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
Aerospace

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More