ÂÌñÏׯÞ

Published

Impact tests on RAMSSES ship hull demonstrator show resilience of composites

Damen Shipbuilding and project consortium partners test 6-meter-high, resin-infused composite hull section.

Share

RAMSSES project.

Photo Credit: Damen Schelde Naval Shipbuilding

Partners in the Realisation and Demonstration of Advanced Material Solutions for Sustainable and Efficient Ships () project are working to demonstrate a composite ship that weighs 40% less than a steel equivalent, offering considerable reduction in fuel consumption and emissions. 

Led by Damen Schelde Naval Shipbuilding (DSNS, Gorinche, Netherlands) and Damen Gorinchem (DSGo), in cooperation with InfraCore Co. (Rotterdam, Netherlands), Evonik (Essen, Germany), Airborne UK and TNO (the Netherlands Organisation for applied scientific research), a six-meter high, composite hull section was unveiled in July 2020, after three years of development. Titled, “Custom Made Hull for Offshore Vessel”, this is one of 13 demonstrators being constructed in the RAMSSES project. 

Unique in this demonstrator project is that the whole cycle from product design, novel resin development, alternative fiber architectures, novel joining solutions, scaling up infusion technology, validation of large composite structures and risk-based design are being developed and tested under the auspices of the marine classification society Bureau Veritas (BV). In addition, the partners pioneered the capability to infuse thick laminates up to six meters in height that represent full-scale ship hull structures.

As described in CW’s Dec 2019 feature “Removing barriers to lightweighting ships with composites”, and in , there is currently an absence of approved guidelines for composite vessels. Regulations covering composite shipbuilding only cover vessels up to 500 tonnes — approximately 25 meters in length. RAMSSES aims to address this by scaling up the composite technology and capacity to design, produce and market composite vessels up to 85 meters long in full compliance with Safety of Life at Sea (SOLAS) and class regulations.

It will do this by validating the production process of large composite structures with economic improvement and key performance indicators for fire resistance, impact resistance and structural robustness. Furthermore, performing the assembly at DSNS has demonstrated the feasibility to construct composite vessels in shipyards traditionally dedicated to steel.

Now, impact tests on the RAMSSES demonstrator at DSNS in Vlissingen, Netherlands, are proving the resilience of composites to harsh marine environments. Multiple impact tests surpassing helicopter emergency landing loads were demonstrated on the RAMSSES hull shell and its composite helicopter deck.

This work section of the RAMSSES project is led by DSNS and , which has developed the baseline design. Engineering has been performed by Airborne UK and InfraCore Co., who have brought the company’s expertise in composites to the project. Evonik has developed the resin to infuse the composites. Following assembly, TNO will perform full-scale tests for validation of design, quality management and structural performance. Bureau Veritas has provided consultancy and advice that will provide a smart track to approval.

The approval process has been developed in close cooperation with Research Institutes of Sweden (RISE), Netherlands Maritime Technology Foundation and Bureau Veritas. A Hazld (hazard identification) test has already been performed by RISE and Bureau Veritas to address all fire risks.

“The work we are doing here is important for the future of shipping. Sustainability is a major focus in industry right now and shipbuilding is no exception,” says Marcel Elenbaas, senior engineer at Research & Technology Support DSNS. “The use of composites for larger ships has significant consequences for the entire design of the ship. If it is lighter, a vessel uses less fuel and produces lower emissions. The vessel also requires smaller engines, which means more space for additional systems, making for a more versatile platform. And of course, composites require considerably less maintenance than a steel vessel. With RAMSSES we have the opportunity to demonstrate the effectiveness and viability of large-scale composite shipbuilding.”

The RAMSSES project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 723246. Other demonstrators in the RAMSSES project include innovative components and modular lightweight systems, maritime equipment, the application of high-performance steels in load-carrying hull structures, the integration of composite materials in various structures  for global repair.

CW Tech Days: High-Temp Composite Solutions

Related Content

Work In Progress

Low-cost, efficient CFRP anisogrid lattice structures

CIRA uses patented parallel winding, dry fiber, silicone tooling and resin infusion to cut labor for lightweight, heavily loaded space applications.

Read More
Infusion

Novel insert technology enables arc stud welding with composites

FAUSST technology enables fast, reliably welded connection of metal components in composite structures.

Read More
Molds/Tools

Modular, curved racing track design enabled by composites and adaptive molds

X-Track worked with bespline to develop an easy-to-install, reusable, customizable composite sandwich panel alternative to dirt BMX and motorcross tracks.

Read More
Glass Fibers

Infused sandwich window frame components help double-decker buses meet weight targets

Prototype GFRP parts were evaluated by Spanish bus manufacturer Carrocerías Ayats as an initial move toward lighter, more efficient, more automated parts and processes.

Read More

Read Next

Sustainability

Removing barriers to lightweighting ships with composites

EU consortia propel large demonstrators, new technology and affordable certification.

Read More
Thermoplastics

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
Focus on Design

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More