ÂÌñÏׯÞ

Published

Ideko research validates robotic solution for clean, precise composites machining

Designed through the European Fibremach project, the equipment provides a greater increase in precision and machining efficiency and integrates a monitoring system that ensures part quality.

Share

Source | Ideko

Spanish research center  (Elgoibar) is offering industry a cleaner and safer machining alternative to conventional milling machines or manual cut and drilling operations through the development and validation of a robotic solution. Capable of machining composite parts with high precision and with reduced investment, the equipment incorporates a patented technology by Ideko in which the workhead sucks 100% of the generated dust particles from the tool itself, preventing them from floating in the air.

“The dust produced in these processes is not only harmful to people, but also to the useful life of the machines themselves due to its abrasive and electrically conductive properties,” says Asier Barrios, Ideko’s project manager. “In the long term, this dust ends up damaging the mechanical components of the machines and can cause faults in the electronic systems, which is why it is essential for these manufacturers to have a solution with these characteristics.”

The chip and dust extraction technology is just one of the innovations developed during the project, which has resulted in a more precise and highly productive robotic cell for machining composite materials. Ideko’s four research groups have also worked on improving the precision and control of the robot machining process to better meet composites manufacturer’s needs.

For instance, Ideko has developed an artificial vision system that increases the robot’s precision, using various cameras and photogrammetric algorithms. “The developed robot, continuously and at high speed. corrects its position and orientation based on camera measurements,” Barrios explains. “This allows machining with an accuracy of between 0.1 and 0.2 millimeters over the robot’s entire working area, which improves the robot’s accuracy by a factor of four times its original capacity.”

In addition, to ensure the quality of the machined parts, a continuous vibration monitoring and control system has been developed. The vibrations generated during machining are measured and analyzed by means of sensors integrated in the robot. If excessive vibrations are detected, which can be caused by poorly clamped tools or worn tools, the robot automatically modifies its feed and rotational speed of the cutting tool to reduce vibrations and prevent damage to the workpiece.

All of the information on the status of the robot and the machining process is thus recorded in the cloud. This information can be consulted to analyze exactly how each part has been machined, and even enables the integration of AI functions that work on the data in the cloud to optimize productivity.

According to Ideko, the robotic architecture also offers the possibility of easily scaling the solution by adapting the created systems to robots of different sizes to meet the need to machine parts of varying volumes. “This will enable companies that manually mill, rechamfer and drill composite parts, to adopt a robotic solution that protects their workers and increases productivity,” says Barrios.

Fibremach, led by Ideko and aided by consortium members including Aldakin Group and Aernnova, was completed in 2023. The project was recognized by  European Association of Manufacturing Technologies CECIMO, which awarded it in 2023 at the first Machine Tools Innovation Award.

Completed in 2023, Fibremach has received funding from the European Union through the Horizon 2020 program and, in addition to Ideko, the consortium has been formed, among others, by Aldakin group and Aernnova.

CW Tech Days: High-Temp Composite Solutions

Related Content

Aerospace

Otto Aviation launches Phantom 3500 business jet with all-composite airframe from Leonardo

Promising 60% less fuel burn and 90% less emissions using SAF, the super-laminar flow design with windowless fuselage will be built using RTM in Florida facility with certification slated for 2030.

Read More
Aerospace

Low-cost, efficient CFRP anisogrid lattice structures

CIRA uses patented parallel winding, dry fiber, silicone tooling and resin infusion to cut labor for lightweight, heavily loaded space applications.

Read More
Natural Fibers

Sulapac introduces Sulapac Flow 1.7 to replace PLA, ABS and PP in FDM, FGF

Available as filament and granules for extrusion, new wood composite matches properties yet is compostable, eliminates microplastics and reduces carbon footprint.

Read More
Sustainability

Bladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts

HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.

Read More

Read Next

Molds/Tools

TPI, UMaine, ORNL to leverage world’s largest polymer 3D printer for wind turbine tooling

Ingersoll Masterprint LFAM printer will be used to produce and demonstrate 100% recyclable tooling that could cut large composite blade development cycles and tooling costs by as much as 50%.

Read More
Hi-Temp Resins

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Thermoplastics

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More