ÂÌñÏׯÞ

Published

New trucks from Toyota and Honda get it Right - with composite beds

David White writes this article in his capacity as executive director of the Automotive Composites Alliance (ACA), a nonprofit association chartered to promote the uses and benefits of composites in the automotive industry. Also the VP of sales and marketing for Meridian Automotive Systems (Dearborn, Mich.), White

David White

Share

Leave it to Toyota and Honda to offer what Ford, GM and Chrysler have talked about -- an all-composite pickup bed on both the newly redesigned Toyota Tacoma and the all-new Honda Ridgeline midsize pickup trucks. We're not talking about a composite "bed liner," we're talking about a complete structure of composite, replacing the "traditional" steel bed. No need for a plastic liner, which adds cost and weight, and provides only a cosmetic fix for the underlying issues -- rust, corrosion and dents/dings to the traditional steel bed.

There has been little doubt for some time that a composite is a good choice for a pickup bed. All the original equipment manufacturers (OEMs) conduct grueling, real-time structural and performance testing at their off-road test facilities. Not only do composite truck beds pass these tests with flying colors, they also offer greater resistance to dents and higher impact strength than steel, and they are 100 percent resistant to rust and almost all corrosion. Further, they are unaffected by most materials that could find their way into a pickup bed, such as petroleum products and gardening chemicals. Designers can optimize weight savings, which run as high as 35 percent, and take advantage of parts consolidation and noise/vibration/harshness (NVH) damping properties. With this weight savings come obvious advantages, including increased fuel economy, better front/rear weight ratios and improved horsepower-to-weight ratios -- more performance. Molding composite beds offers the opportunity to mold-in features not available in steel beds, such as side and bed-floor storage compartments and grained, non-skid surfaces.

So why Honda and Toyota, and not the Big Three? From a historical perspective, it's no surprise. I recently reviewed CT's February issue from a year ago, where I wrote in this column that "Ford, GM and DaimlerChrysler have all celebrated their centennials, a milestone that represents 100 years of stamping, grinding, forging, welding, assembling and painting steel." (See CT February 2004, p. 7). The Big Three know steel. They have billions of capital dollars in steel processing technology and decades of investment in training a workforce to optimize its use. Little wonder, then, that in the past they've chosen to win, lose or draw with steel as their first, second and third material choice for the majority of the vehicle.

For many years, this was a defensible strategy. Steel was cheap and plentiful. Car owners took it for granted that their vehicles would rust. Gas was cheap, thus weight was relatively unimportant. And … there weren't many alternatives to steel. That was then.

Today, however, global market dynamics have turned traditional thinking upside down. Thankfully, many more lightweight, cost-effective material choices are available, including thermoset composites, thermoplastics (reinforced and unreinforced), aluminum, magnesium and hybrid materials. Growth in these materials is increasing and will continue to increase as OEMs take advantage of the unique features and benefits of these materials.

One thing hasn't changed: Cost was, is and always will be king. The U.S. light vehicle market is so competitive that the OEMs will always be driven to be the low-cost producer. Since over 50 percent of their costs are purchased materials, they watch every penny and are disciplined to contain new vehicle costs. While molds for composites are significantly less expensive than steel stamping dies, that fact doesn't entirely offset the cost of composite materials, so composites remain more expensive than steel on a lb to lb basis. But that delta is quickly disappearing, because steel prices are on the rise. They've gone up almost 50 percent in the past year alone, primarily driven by China's economic expansion, and prices may continue to trend upward. Gasoline prices also have increased significantly, putting a premium on vehicle weight reduction. Suddenly, alternatives to traditional materials are less a luxury than an imperative. This, as they say, is now.

Since their first entry into automotive applications, composites have proved consistently to be lighter and more durable than steel. But with today's shifting economic climate -- not to mention the nudge from Honda and Toyota -- the Big Three should begin to get past outdated assumptions based on initial material cost to see composites as the greater lifetime ownership value, as well.

I foresee more and exciting applications of composites for pickup beds in the near future. More importantly, what is true for pickup beds should prove true in many other light vehicle/heavy truck applications where lightweight, low investment, high strength and corrosion-free properties are design imperatives.

Related Content

Molds/Tools

Bladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts

HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.

Read More
Feature

Industrializing additive manufacturing in the defense/aerospace sector

GA-ASI demonstrates a path forward for the use of additive technologies for composite tooling, flight-qualified parts.  

Read More
Filament Winding

The next evolution in AFP

Automated fiber placement develops into more compact, flexible, modular and digitized systems with multi-material and process capabilities.

Read More
Plant Tours

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More

Read Next

RTM

Next-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly

MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.

Read More
PAEK

Ultrasonic welding for in-space manufacturing of CFRTP

Agile Ultrasonics and NASA trial robotic-compatible carbon fiber-reinforced thermoplastic ultrasonic welding technology for space structures.

Read More
Design/Simulation

Cutting 100 pounds, certification time for the X-59 nose cone

Swift Engineering used HyperX software to remove 100 pounds from 38-foot graphite/epoxy cored nose cone for X-59 supersonic aircraft.

Read More