ÂÌñÏׯÞ

Published

Composites feature in Altair’s 8th Annual Enlighten Awards

Recognized jointly with the Center for Automotive Research (CAR), winners represent the world’s best initiatives to reduce vehicle weight and meet emissions targets.

Share

Mubea’s full composite Tension Leaf Spring to substitute multi-layer steel leaf springs with a weight advantage of up to 75%. Source | Altair

Altair (Troy, Mich., U.S.), a global technology company providing solutions in product development, high-performance computing (HPC) and data analytics, announced on August 4 the winners of the 2020 Altair Enlighten Awards. Presented jointly with the (CAR, Ann Arbor, Mich., U.S.), the 8th Annual Enlighten Awards reportedly acknowledges initiatives to reduce vehicle weight and meet emissions targets, as well as breakthrough advancements that push the industry towards a more sustainable future.

“As we sit at the crossroads of science, engineering, art and design, creating a more sustainable future is the essence of Altair,” says James Scapa, founder and chief executive officer of Altair. “I am proud to see that the Altair Enlighten Awards have become a sought-after recognition that acknowledges the world’s greatest automotive lightweighting innovations, while inspiring interest from industries, engineers, policymakers, educators, students and the public.”

Presented in four categories, Altair says the Enlighten Awards recognize commercial automotive lightweighting achievements and technologies. The 2020 winners include:

  • Full Vehicle winner: (Milwaukee, Wis., U.S.) used electrification to improve energy capacity of its electric motorcycle by 90%, while increasing the ratio of energy capacity to vehicle mass by 60%. In addition to further improvements, this initiative established mass and stiffness design and optimization practices for future motorcycle programs. COMPOSITES: Although the Livewire uses an aluminum frame, Harley-Davidson offers a carbon fiber upgrade option and as a prototype, the electric bike featured a carbon fiber-reinforced final drive belt to deliver power to its rear wheel via a clutch-less direct drive
    • Runner-up: Nissan (Yokohama, Japan) for its new platform, designed to improve safety and dynamic performance without increasing weight by using simulation to place the right materials in the right locations.
  • Module winner: An industry first, (Aichi, Japan) created a free-standing, two-occupant injection molded back-frame with no molded reinforcement for the . It consolidated 15 components to one part with one injection, driving down costs by 15%, reducing mass by 30% and maintaining two times the safety performance.
    • Runner-up: (ZF, Friedrichshafen, Germany) created the first-to-market electric park brake (EPB) with more than 75 million vehicles fitted with EPB for world roadways. The heavy duty EPB offers a weight savings of 25 pounds or more for large trucks and SUVs when compared to conventional drum-in-hat park brakes.
  • Enabling Technology winner: (Attendorn, Germany) developed 
    a glass fiber-reinforced polymer (GFRP) with weight savings of up to 75% compared to a standard multi-layer steel spring. The company used a scripted and automated workflow that begins from a parametrized spring model in which all spring parameters can be adapted.
    • Runner-up: ’s (Wilmington, Del., U.S.) BETASEAL  for its use of BETASEAL X2500 structural adhesive, which quickly joins thermoplastic inner and outer panels and enables modular lightweight assembly. The company’s Magna thermoplastic liftgates bonded with BETASEAL X2500 structural adhesive have realized a 20-30% weight savings compared to welded steel liftgates. COMPOSITES: Magna’s thermoplastic composite liftgates enable a 25-45% reduction in part count, 20-30% reduction in mass and 25-35% reduction in investment cost.
    • Honorable mention: computer-aided engineering (CAE) multi-disciplinary design optimization (MDO) methodology captures top technology trends by applying simulation-driven design and data analytics for product design.
  • Future of Lightweighting winner:  (Corbetta, Italy) developed a

    ASMC suspension steering knuckle from Marelli (right view). Source | Altair

    new advanced sheet compression molded suspension steering knuckle that ensures a 25% mass savings compared to the aluminum version used on the Jeep Compass, and a 50% savings compared to the cast iron version. COMPOSITES: This steering knuckle contains the wheel and attaches to the suspension and steering components. Made from chopped carbon fiber molding compound, this composite material is more resistant to cracking and made viable for automotive production thanks to the Advanced Sheet Molding Compression (ASMC) manufacturing process, a high-volume, high-pressure method suitable for molding complex, high-strength materials. Using a 1500-ton press, Marelli demonstrated complex structural parts that meet performance requirements produced in a one-shot, net shape process suitable for automotive volumes.
    • Runner-up: Nissan’s ultimate lightweight aluminum/carbon fiber reinforced polymer (CFRP) body side panel using topology design reduced weight by utilizing a multi-material structure of aluminum and short fiber carbon fiber reinforced thermal plastic (CFRTP). Compared to conventional steel body side panels, it can reduce weight by approximately 50%. COMPOSITES: Although Nissan has not released further details, short fiber CFRTP is being used by (Detroit, Mich., U.S.) in the CarbonPro pickup box for its 2019 short-bed (crew-cab) GMC Sierra AT4 (off-road) and Sierra Denali half-ton pickups. The Sereebo CFRTP sheet composite is supplied by Teijin (Tokyo, Japan).

“We are proud to offer the automotive industry’s only award dedicated to vehicle lightweighting and are thrilled to see how many advancements are made through the use of optimization technologies,” says Richard Yen, Altair senior vice president, global industry verticals. “Each year the entries are more and more impressive, making it increasingly difficult to select the winners as entrants are making great strides in lightweighting, and using inventive approaches through simulation and materials.”

“On behalf of myself and the Toyota North American Research and Development team, it is an honor to accept this Altair Enlighten Award for the resin back-frame in the new Toyota Sienna third row seat. We are excited to release this industry-leading seat back that focuses on customer satisfaction with lighter touch and ease of operation,” says Todd Muck, senior principal engineer, Toyota TSPO – Advanced Development Group. “Strong teamwork and collaboration allowed us to accept the monumental challenge of lightweighting and improved performance while still achieving a lower cost. The final design, which demonstrates a reduction in ​both weight and cost, is a testament to our entire Toyota development team and the invaluable support of our supplier partner, BASF [Ludwigshafen, Germany]. We turned a dream into reality by creating something entirely new for this vehicle segment.”

Carla Bailo, president and chief executive officer at CAR notes that “Design optimization is critical for every new product in the automotive industry and lightweighting is a key component. We are honored to collaborate with Altair in acknowledging these design innovations in the automotive sector. CAR’s multidisciplinary approach gives us a clear viewpoint on critical issues facing the global automotive industry and it is thrilling to see advancements in lightweighting making an immediate impact.”

Altair announced the winners in an awards ceremony on August 4, 2020.  For more information on the Enlighten Award, please visit .

CW Tech Days: High-Temp Composite Solutions

Related Content

Guidance for the thermoforming process

A briefing on some of the common foam core material types, forming methods and tooling requirements.

Read More
Plant Tours

Plant tour: Arris Composites, Berkeley, Calif., U.S.

The creator of Additive Molding is leveraging automation and thermoplastics to provide high-volume, high-quality, sustainable composites manufacturing services.

Read More
Wind/Energy

SRI develops scalable, infiltration-free ceramic matrix composites

Work in two DOE projects is demonstrating C/C-SiC produced in 3-5 days with <5% shrinkage, <10% porosity and 50% the cost of conventional C/C and C/C-SiC.

Read More

Prepreg compression molding supports higher-rate propeller manufacturing

To meet increasing UAV market demands, Mejzlik Propellers has added a higher-rate compression molding line to its custom CFRP propeller capabilities.  

Read More

Read Next

Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Filament Winding

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Welding

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More