Polyester resins: The basics
Polyester resins are widely used resin systems. Learn more about their chemical makeup and how they are used in the composites industry.
Editor’s note: This content was originally published on NetComposites.com. NetComposites was acquired by ÂÌñÏ×ÆÞ’s parent company, Gardner Business Media, in February 2020.
Polyester resins are the most widely used resin systems, particularly in the marine industry. By far the majority of dinghies, yachts and workboats built in composites make use of this resin system.
Polyester resins such as these are of the “unsaturated” type. Unsaturated polyester resin is a thermoset, capable of being cured from a liquid or solid state when subject to the right conditions. It is usual to refer to unsaturated polyester resins as “polyester resins,” or simply as “polyesters.” There is a whole range of polyesters made from different acids, glycols and monomers, all having varying properties.
There are two principle types of polyester resin used as standard laminating systems in the composites industry. Orthophthalic polyester resin is the standard economic resin used by many people. Isophthalic polyester resin is now becoming the preferred material in industries such as marine, where its superior water resistance is desirable.
The figure below shows the idealized chemical structure of a typical polyester. Note the positions of the ester groups (CO – O – C) and the reactive sites (C* = C*) within the molecular chain:
Most polyester resins are viscous, pale-colored liquids consisting of a solution of a polyester in a monomer which is usually styrene. The addition of styrene in amounts of up to 50% helps to make the resin easier to handle by reducing its viscosity. The styrene also performs the vital function of enabling the resin to cure from a liquid to a solid by “cross-linking” the molecular chains of the polyester, without the evolution of any by-products. These resins can therefore be molded without the use of pressure and are called “contact” or “low-pressure” resins. Polyester resins have a limited storage life as they will set or “gel” on their own over a long period of time. Often small quantities of inhibitor are added during the resin manufacture to slow this gelling action.
For use in molding, a polyester resin requires the addition of several ancillary products. These products are generally:
- a catalyst,
- an accelerator, or
- additives for thixotropic properties, pigment, filler or chemical/fire resistance.
A manufacturer may supply the resin in its basic form or with any of the above additives already included. Resins can be formulated to the molder’s requirements ready simply for the addition of the catalyst prior to molding. As has been mentioned, given enough time an unsaturated polyester resin will set by itself. This rate of polymerization is too slow for practical purposes and therefore catalysts and accelerators are used to achieve the polymerization of the resin within a practical time period. Catalysts are added to the resin system shortly before use to initiate the polymerization reaction. The catalyst does not take part in the chemical reaction but simply activates the process. An accelerator is added to the catalyzed resin to enable the reaction to proceed at workshop temperature and/or at a greater rate. Since accelerators have little influence on the resin in the absence of a catalyst they are sometimes added to the resin by the polyester manufacturer to create a “pre-accelerated” resin.
The molecular chains of the polyester can be represented as follows, where “B” indicates the reactive sites in the molecule:

With the addition of styrene “S,” and in the presence of a catalyst, the styrene cross-links the polymer chains at each of the reactive sites to form a highly complex three-dimensional network as follows:
The polyester resin is then said to be “cured.” It is now a chemically resistant (and usually) hard solid. The cross-linking or curing process is called “polymerization.” It is a non-reversible chemical reaction. The “side-by-side” nature of this cross-linking of the molecular chains tends to means that polyester laminates suffer from brittleness when shock loadings are applied.
Great care is needed in the preparation of the resin mix prior to molding. The resin and any additives must be carefully stirred to disperse all the components evenly before the catalyst is added. This stirring must be thorough and careful as any air introduced into the resin mix affects the quality of the final molding. This is especially so when laminating with layers of reinforcing materials as air bubbles can be formed within the resultant laminate which can weaken the structure. It is also important to add the accelerator and catalyst in carefully measured amounts to control the polymerization reaction to give the best material properties. Too much catalyst will cause too rapid a gelation time, whereas too little catalyst will result in under-cure.
Coloring of the resin mix can be carried out with pigments. The choice of a suitable pigment material, even though only added at about 3% resin weight, must be carefully considered as it is easy to affect the curing reaction and degrade the final laminate by use of unsuitable pigments.
Filler materials are used extensively with polyester resins for a variety of reasons including:
- to reduce the cost of the molding,
- to facilitate the molding process, or
- to impart specific properties to the molding.
Fillers are often added in quantities up to 50% of the resin weight, although such addition levels will affect the flexural and tensile strength of the laminate. The use of fillers can be beneficial in the laminating or casting of thick components where otherwise considerable exothermic heating can occur. Addition of certain fillers can also contribute to increasing the fire-resistance of the laminate.
For the latest on poly/vinyl ester resins, visit compositesworld.com/zones/poly-vinyl-esters.
Related Content
Nondestructive inspection methods available to composites manufacturers
An overview of composite laminate inspection techniques ranging from manual testing methods to more advanced, noncontact options.
Read MoreComposites end markets: Sports and recreation (2025)
The use of composite materials in high-performance sporting goods continues to grow, with new advancements including thermoplastic and sustainability-focused materials and automated processes.
Read MoreSeven tips for machining composite aerospace components
Machining composite materials is a dusty, arduous and abrasive process that is hard on cutting tools, requiring the right combination of strategies and know-how to properly navigate their dynamics.
Read MoreComposites end markets: Energy (2025)
Despite political and supply chain challenges, renewable and nuclear energy continue to grow in use. Composite materials enable current and future energy technologies across sectors.
Read MoreRead Next
Next-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly
MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.
Read MoreScaling up, optimizing the flax fiber composite camper
Greenlander’s Sherpa RV cab, which is largely constructed from flax fiber/bio-epoxy sandwich panels, nears commercial production readiness and next-generation scale-up.
Read MoreCeramic matrix composites: Faster, cheaper, higher temperature
New players proliferate, increasing CMC materials and manufacturing capacity, novel processes and automation to meet demand for higher part volumes and performance.
Read More