ÂÌñÏׯÞ

Published

3D-woven composites find success in aerospace, space

CAMX 2024: Bally Ribbon Mills experts are displaying the company’s various joints, thermal protection system (TPS) technologies and other 3D woven composites for mission-critical applications.

Share

Source | Bally Ribbon Mills

Bally Ribbon Mills (BRM, Bally, Pa., U.S.) designs, develops and manufactures highly specialized engineered woven fabrics. BRM experts are on hand in to discuss the company’s 3D woven joints, thermal protection systems (TPS) and other 3D structures.

In partnership with NASA (Washington, D.C., U.S.) BRM recently developed a 3D orthogonally woven 3DMAT quartz material for the Orion Multi-Purpose Crew Vehicle’s (MPCV) compression pads. 3DMAT was named the 2023 NASA Government Invention of the Year.

BRM uses 3D continuous weaving to create new joint structures and improve existing joints. Delivering an optimal blend of strength, durability and structural integrity, BRM’s 3D woven joints are available in “Pi – π,” double “T,” “H” and other complex net shapes. According to the company, these joints reduce weight and cost without sacrificing integrity and performance. Because of the nature of the 3D weave, strength and support is translated in all three dimensions, thus enabling the join to reinforce the strength along the load paths of the substructures being joined together. These woven shapes can be tailored to suit the architecture of the structure itself, as well as the subcomponents being joined.

3D woven composites by BRM are said to be particularly successful in aviation heat shield applications such as TPS. These systems are mission-critical components, particularly in space exploration vehicles. The ability to vary yarn types, density, thickness and width, as well as resin type, enables BRM to create fully customizable TPS to fit each specific mission or application’s needs.

Along with TPS systems, 3D woven components also function well as engine parts in aircraft. Replacing traditional titanium engine components with 3D woven carbon fiber composites serves to reduce weight and therefore lifetime cost, all while meeting the rigorous demands of manufacturing and use.

Related Content

Related Content

Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Aerospace

First Airbus A350 crash confirmed in Haneda

Shortly after touch-down, a JAL A350-900 aircraft recently collided with a De Havilland Canada Dash 8. Exact circumstances are still unknown.

Read More
Focus on Design

Next-generation airship design enabled by modern composites

LTA Research’s proof-of-concept Pathfinder 1 modernizes a fully rigid airship design with a largely carbon fiber composite frame. R&D has already begun on higher volume, more automated manufacturing for the future.

Read More
Filament Winding

A new era for ceramic matrix composites

CMC is expanding, with new fiber production in Europe, faster processes and higher temperature materials enabling applications for industry, hypersonics and New Space.

Read More

Read Next

Infusion

Bally Ribbon Mills technology features infusion for 3D woven joints

Woven fabrics manufacturer Bally Ribbon Mills is highlighting its film infusion capabilities for 3D woven joints woven thermal protection systems and more.

Read More

Optima 3D demonstrates new 3D weaving technology for ASCC

U.K. company will install compact system with innovative shuttle and digital twin capability for soft and hard composite structures at University of Maine’s new textile lab.  

Read More
Feature

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More