Low-CO2 recycled composite reduces environmental, economic footprint
CAMX 2025: Fairmat exhibits FairPly, a scalable, versatile material engineered from cured CFRP chips that releases 90% less manufacturing emissions and can be incorporated with a variety of other virgin material systems.
Source | Fairmat
FairPly, exhibited by (Paris, France) addresses the escalating global problem of carbon fiber composite waste. It is contended to be one of the lowest CO2-emitting recycled materials — up to 90% — at equivalent properties compared to virgin carbon fiber-reinforced polymer (CFRP) manufacturing, and aims to eliminate the “green premium” through significant cost reduction.
FairPly is engineered from Fairmat’s cured CFRP chips. These chips are created through a mechanical recycling process that preserves fiber integrity and length, then assembled into a thin layer of even thickness that mimics other conventional composite forms. A veil or woven fabric is generally used to support the chips, depending on the type of molding technique or application.
Fairmat leverages advanced robotics, AI, proprietary software and computer vision for high precision, quality and accuracy in manufacturing. This technology ensures batch-to-batch consistency and predictable performance.
FairPly can be made into a part by laminating multiple layers together or by combining it with other virgin materials. It supports various composite processes including resin films and liquid resin application methods like wet layup, infusion, resin transfer molding (RTM) and spraying. It can also be combined in between resin-rich prepregs as a form of hybridization. FairPly is compatible with a wide range of co-materials such as glass and carbon fibers, foams and honeycomb core. Fairmat says this versatility enables the creation of hybrid composite structures and gradual incorporation of recycled content into any part. Its storage at room temperature simplifies logistics.
Beyond standard applications, FairPly’s semi-discontinuous nature has led to additional unforeseen benefits, such as enhanced damping in skis and shoe insoles as well as improved impact perception in racket sports.
Related Content
-
Watch: A practical view of sustainability in composites product development
Markus Beer of Forward Engineering addresses definitions of sustainability, how to approach sustainability goals, the role of life cycle analysis (LCA) and social, environmental and governmental driving forces. Watch his “CW Tech Days: Sustainability” presentation.
-
Bioabsorbable and degradable glass fibers, compostable composite parts
ABM Composite offers sustainable options and up to a 60% reduction in carbon footprint for glass fiber-reinforced composites.
-
Partners recycle A350 composite production waste into adjustable-length rods for MFFD
Herone, Spiral RTC, Teijin Carbon Europe and Collins Aerospace Almere recycle A350 thermoplastic composite clips/cleats waste into rods for the all-thermoplastic composite Multifunctional Fuselage Demonstrator’s crown.