Carbon fiber lightens medical laser chassis
Reduced weight shortens surgical and diagnostic procedures.
Lasers have been used in industry since the 1960s. They are now commonly employed in many surgical procedures, such as cataract, tumor and lesion removal, vision correction, and cosmetic surgery, and they also play a role, today, in a wide range of medical diagnostic procedures. (Wołomin, Poland) manufactures medical laser chasses, using carbon fiber-reinforced epoxy composites. “It lightens the chassis by roughly 40%, resulting in a 4-kg weight vs. aluminum at 6.5 kg,” says owner Artur Kiliański. “The lower weight makes the laser move faster, which reduces the time required for medical procedures and makes the laser easier to control.” The much lower starting cost offered by manufacturing with carbon fiber composites also is a key benefit. “The molds only require a 3D drawing,” notes Kiliański, and he says the cost of mold build is about €3,000-€4,000 (US$3,410-US$4,550).
“Starting manufacture of this element from aluminum or steel is much more expensive,” he contends, pointing out that this is especially true for manufacturers who produce specialty items
at low volumes, for example, 50-100 units per year. Carbon fiber also helped Dexcraft’s customer to differentiate its products. “The client wanted to offer a lightweight, premium-quality product, and the easily recognized look of aesthetic carbon fiber connotes both immediately.”
Dexcraft provides custom carbon composite manufacturing. The company also supplies pre-cured sheet laminates and other standard products for the automotive aftermarket, sporting goods and consumer goods markets.
Related Content
-
SCABAEGO project develops bioactive composite that supports healing of broken bones
Fraunhofer IFAM researchers and partners combine biodegradable polymer polycaprolactone and bioactive glass to 3D print custom-fit structures for bone fracture sites.
-
Composite combat drone inlet duct proves novel fabrication approach
The 30-foot overbraided Frankenstein demonstrator was designed by NIAR, A&P and Fiber Dynamics to explore more flexible manufacturing of complex composite structures.
-
Flux GmbH sponsors TUM Dash exoskeleton team
Flux to supply precision inductive rotary encoders for exoskeleton initiative for paraplegic patients that is expected to incorporate a future carbon fiber frame.