ÂÌñÏׯÞ

Published

VolturnUS floating wind turbine celebrates one year of service

The VolturnUS 1:8 scale floating wind turbine off the coast of Maine has successfully withstood 18 severe storms in its one year of service.

Share

U.S. Sen. Susan Collins and U.S. Rep. Michael Michaud welcomed top officials from the U.S. Department of Energy (DOE) to Castine, Maine, USA, on Sept. 5 to celebrate a successful year of the VolturnUS floating wind turbine deployed off Castine.

The federal officials were joined by representatives from the University of Maine, Maine Maritime Academy and Cianbro, who discussed highlights of the year-long deployment off the coast of Castine. VolturnUS, a 1/8th scale model of a 6-MW floating wind turbine with more than 50 sensors on board, has been successfully operating and collecting data related to design capabilities for more than a year, including throughout the Maine winter. Among the data highlights:

  • The VolturnUS 1:8 successfully withstood 18 severe storms equivalent to 50-year storms, and one 500-year storm.
  • The maximum acceleration measured was less than 0.17 g for all 50- and 500-year storms, which matched numerical predictions.
  • The maximum tower inclination angle measured was less than 7° in all 50- and 500-year storms, and these numbers matched predictions.

“This anniversary is another great day for our state, the University and its many partners, and for the advancement of clean, renewable energy for our nation,” said Collins. “This is a remarkable achievement and confirms my belief that the most innovative and dedicated wind energy researchers in the world are working right here in Maine.”

Michaud said the VolturnUS wind turbine is an incredible project and a great example of the type of forward-thinking ideas that can strengthen our economy in the years to come and define Maine as a leader in innovative technologies. “The UMaine team has done incredible work to get not just VolturnUS up and running, but many other promising initiatives as well. I look forward to continuing to partner with them on advancing these projects that will strengthen Maine's economy,” he said.

In addition, as part of the event, DOE Assistant Secretary for Energy Efficiency and Renewable Energy, David Danielson, signed a $3.8 million cooperative research agreement with UMaine to continue the design and engineering work of the full-scale VolturnUS floating hull.

“The VolturnUS floating turbine is a patent-pending technology developed at the University of Maine Advanced Structures and Composites Laboratory by UMaine and Cianbro personnel. In June 2013, it became the first grid-connected offshore wind turbine deployed in the Americas, and the first floating turbine in the world designed using a concrete hull and a composites material tower to reduce costs and create local jobs. The turbine is a 1:8 geometric scale test program to prepare for the construction of a larger 6-MW floating turbine. The project brought together more than 30 organizations as part of the DeepCwind Consortium, led by UMaine and funded through a competitive DOE grant and industry contributions.

“The success of the VolturnUS 1:8 test project deployed off Castine is a critical milestone on our path to allow us to economically harness the enormous wind power far offshore the U.S.," said Habib Dagher, director of UMaine's Advanced Structures and Composites Center. “The VolturnUS concrete floating hull technology has the potential to harness over 50 percent of the U.S. 4,000-GW offshore wind resource. With 156 GW of offshore wind capacity off the Maine coast, and 4,000 GW off the U.S. coast, we have an opportunity to reduce our reliance on fossil fuels, stabilize energy prices over the long run, help protect the environment, stimulate local economic activity and create a new industry.” 

Related Content

Carbon Fibers

Polar Technology develops innovative solutions for hydrogen storage

Conformable “Hydrogen in a Box” prototype for compressed gas storage has been tested to 350 and 700 bar, liquid hydrogen storage is being evaluated.

Read More
Nanomaterials

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Wind/Energy

Composites end markets: Batteries and fuel cells (2024)

As the number of battery and fuel cell electric vehicles (EVs) grows, so do the opportunities for composites in battery enclosures and components for fuel cells.

Read More
Aerospace

Revolutionizing space composites: A new era of satellite materials

A new approach for high volumes of small satellite structures uses low-CTE, low-cost CFRP cellular core, robust single-ply skins and modular panel systems to cut lead time, labor and cost for reflectors, solar arrays and more.

Read More

Read Next

Welding

Ultrasonic welding for in-space manufacturing of CFRTP

Agile Ultrasonics and NASA trial robotic-compatible carbon fiber-reinforced thermoplastic ultrasonic welding technology for space structures.

Read More
Aerospace

Ceramic matrix composites: Faster, cheaper, higher temperature

New players proliferate, increasing CMC materials and manufacturing capacity, novel processes and automation to meet demand for higher part volumes and performance.

Read More
Sustainability

Next-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly

MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.

Read More