Vestas looks to scale up blade recycling partnership solution offering to U.S. and other regions
Vestas seeks areas where local recycling infrastructure is robust, and customer demand can be established. Recycling methods can include cement co-processing, gasification, development of new composite materials and reclamation.

Photo Credit: Getty Images
(Aarhus, Denmark) reports that it has been delivering a blade recycling partnership solution for several wind farm operators across the U.S. In addition, the sustainable energy solutions company is open to offering the solution in more regions where local recycling infrastructure is robust, and customer demand can be established.
One of Vestas’ first large-scale project under this offering was successfully completed in September 2021, and saw Vestas service teams decommission and recycle 10 turbine blades. Several ongoing projects are currently in progress across multiple sites, including the 151-megawatt (MW) Blue Canyon II Wind Farm repowering project, as well as the 63-MW Snyder Wind project with Enel Green Power (Rome, Italy). Recycling of the decommissioned blades was a firm requirement from the operators of both projects. At present, all ongoing recycling projects in the U.S. have reached a scale of 285 turbines blades in total, including nacelle covers and hub covers.
As part of its solution, Vestas teams scope an optimal recycling project plan to align with locally available solutions and customer needs. The recyclable glass fiber material is separated from the turbine, cut into transportable units and is transported to vetted recycling partners, using a glass fiber recycling method that aligns with the customer’s sustainability ambitions. Recycling methods can include cement co-processing, gasification, forming new composite materials and reclaiming glass and carbon fibers.
“Nurturing a robust recycling infrastructure to support the waste management challenge across the renewables industry is an urgent and critical issue. Glass fiber recycling methods are now at a point where they can be scaled up rapidly, and with renewable plant owners becoming increasingly conscious of the environmental impact of their decommissioned assets, it’s no longer a question of demand or volume,” says Lisa Ekstrand, senior director and head of Sustainability, Vestas. “At Vestas, we’re ready to support the scaling up of glass fiber recycling worldwide, leveraging our global transport and logistics footprint, and we’re ready to offer recycling partnership solutions wherever we see an opportunity with local recycling partners and where it is valued by customers.”
To help drive more maturity in industrial recycling, Vestas is currently part of the DecomBlades project, a cross-sector initiative striving to increase the adoption of recycling practices by developing pathways for commercialization. As global installed capacity of renewables is set to increase significantly over the coming decade, Vestas is also working to support the adoption of a circular economy across the renewables industry. Vestas is currently spearheading the CETEC project, a consortium of academic and industry leaders, aiming to commercialize a new circularity technology for wind turbine blades.
Vestas is accelerating recycling solutions as part of its service offering as market conditions around waste management continue to evolve. With a 52,000 tons of blades waste predicted to exist by 2050 in Europe, and more than two million tons in the U.S. by 2050, the company says the need for scalable recycling pathways is increasing. This awareness can be seen in Europe, where the wind industry use for turbine blades by 2025; regulation around waste management and circularity practices is also tightening in some markets
Related Content
Partners recycle A350 composite production waste into adjustable-length rods for MFFD
Herone, Spiral RTC, Teijin Carbon Europe and Collins Aerospace Almere recycle A350 thermoplastic composite clips/cleats waste into rods for the all-thermoplastic composite Multifunctional Fuselage Demonstrator’s crown.
Read MoreWatch: A practical view of sustainability in composites product development
Markus Beer of Forward Engineering addresses definitions of sustainability, how to approach sustainability goals, the role of life cycle analysis (LCA) and social, environmental and governmental driving forces. Watch his “CW Tech Days: Sustainability” presentation.
Read MoreRecycling hydrogen tanks to produce automotive structural components
Voith Composites and partners develop recycling solutions for hydrogen storage tanks and manufacturing methods to produce automotive parts from the recycled materials.
Read MoreBioabsorbable and degradable glass fibers, compostable composite parts
ABM Composite offers sustainable options and up to a 60% reduction in carbon footprint for glass fiber-reinforced composites.
Read MoreRead Next
Assembling the Multifunctional Fuselage Demonstrator: The final welds
Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.
Read MoreAll-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat
Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.
Read MoreComposites end markets: New space (2025)
Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.
Read More