R&D activities recommended to US DOE to achieve super-sized composite wind blades
“Big Adaptive Rotor” project is prioritizing technology to develop land-based 5-megawatt turbine with 100-meter-long blades.
DNV GL recently announced the release of , commissioned by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, which examines the challenges associated with manufacturing and deploying next-generation, increasingly larger land-based wind turbines. According to the report, in the past decade, the U.S. wind energy industry has achieved significant improvements in energy production and cost efficiency, driven in part by increased turbine, blade and tower size. However, the industry is quickly approaching a logistical cost and capability ceiling as turbine components become too large for existing infrastructure and transportation to accommodate.
Currently, the report says, the largest blades deployed in the U.S. are 67 meters, but blades up to 88.4 meters — or almost as long as a football field — have been deployed in Europe; and blades up to 115 meters are on the horizon. As turbine component sizes increase, logistical constraints can either reduce the number of developable sites or elevate costs, which can make some potential sites economically uncompetitive. Finding new solutions to logistical challenges associated with ever-larger components can enable the wind industry to achieve optimal wind levelized cost of energy (LCOE) options for every region of the United States.
DNV GL explored three innovation pathways to help identify high-value R&D opportunities:
- Innovative transportation: To address physical constraints and challenges, new methods can facilitate the transportation of blades from factories to wind projects via road, rail or air.
- Segmented blades: Segmented or modular blades may enable the use of more cost-effective transportation, but must also account for the impacts on blade design, manufacturing and on-site assembly.
- On-site manufacturing: Deploying a temporary blade manufacturing factory at the project site to fabricate blades from raw materials to finished product largely eliminates transportation challenges associated with longer blades.
“DNV GL identified a number of R&D activities that could make contributions to the viable development of supersized blades. These recommendations are feeding into the U.S. Department of Energy-funded ‘Big Adaptive Rotor’ project to assess and prioritize technology needed to develop a cost-competitive land-based 5-megawatt turbine with 100-meter-long blades,” says Ryan Wiser, senior scientist, Lawrence Berkeley National Laboratory.
The acceleration of R&D to make supersized blades feasible requires collaboration between researchers in the United States, turbine manufacturers, blade manufacturers, and transportation logistics companies. Blades are the most critical component in determining the technical and economic performance of wind turbines. The logistics associated with supersized blades adds additional levels of complexity into the development process, which the industry and researchers must work collaboratively to address.
“To realize continued progress in making wind energy cost-competitive across all regions in the U.S., the wind industry must accelerate R&D in innovative approaches to blade design, manufacture and transportation,” said Richard S. Barnes, executive vice president, Energy North America at DNV GL. “The good news is that there appears to be fertile ground for R&D and accessible solutions on the near horizon.”
According to the report, high-value R&D areas include:
- Further advances in high-stiffness / low-cost materials like industrial carbon fiber and thermoplastics materials;
- Advanced controls and sensor technologies that could be applied to monitor or enable blade bending in transport or monitor or control segmented blade loads such that lower-weight blades can be achieved;
- Reducing the blade chord dimension would enable operation at higher tip speeds and improves blade transport potential, but issues related to aeroacoustics and leading-edge erosion need further improvement; and
- Advanced aeroelastic modeling of dynamic stability and deflections can enable the development of more slender blades that can allow controlled deflection during transport.
Related Content
Composites manufacturing for general aviation aircraft
General aviation, certified and experimental, has increasingly embraced composites over the decades, a path further driven by leveraged innovation in materials and processes and the evolving AAM market.
Read MoreAl Seer Marine, Abu Dhabi Maritime unveil world’s largest 3D-printed boat
Holding the new Guinness World Record at 11.98 meters, the 3D-printed composite water taxi used a CEAD Flexbot to print two hulls in less than 12 days.
Read MoreHigh-tension, vertical filament winding enables affordable flywheel energy storage system
French startup Energiestro’s prototype solar energy flywheel-based storage system aims to reduce costs with glass fiber composites and prestressed concrete.
Read MoreSustainable Infrastructure Systems creates fiber-reinforced post-consumer plastic structural panels
Australian composites manufacturer offers a scalable building solution, already established in a pedestrian bridge application, to tackle unprocessed soft plastics waste.
Read MoreRead Next
Assembling the Multifunctional Fuselage Demonstrator: The final welds
Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.
Read MorePlant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
Read MoreDeveloping bonded composite repair for ships, offshore units
Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.
Read More