Pratt & Whitney selected for hydrogen propulsion research project
The Hydrogen Steam Injected, Inter-Cooled Turbine Engine (HySIITE) project will use liquid hydrogen combustion and water vapor recovery to achieve zero in-flight CO2 emissions.

Photo Credit: Pratt & Whitney
The U.S. Department of Energy (DOE) announced it is allocating $175 million for 68 clean energy research and development (R&D) projects, including tasking (East Hartford, Conn., U.S.) to develop novel, high-efficiency hydrogen-fueled propulsion technology for commercial aviation.
Under the Advanced Research Projects Agency – Energy (ARPA-E), the Hydrogen Steam Injected, Inter-Cooled Turbine Engine (HySIITE) project will use liquid hydrogen combustion and water vapor recovery to achieve zero in-flight CO2 emissions, while reducing nitrogen oxide (NOx) emissions by up to 80% and reducing fuel consumption by up to 35% for next-generation single-aisle aircraft.
“Pratt & Whitney has a long legacy with hydrogen-fueled propulsion, and we are excited to advance this emerging technology as part of our comprehensive strategy to support the aviation industry’s ambitious goal of achieving net zero aircraft CO2 emissions by 2050,” says Graham Webb Pratt & Whitney chief sustainability officer.
The HySIITE engine will burn hydrogen in a thermodynamic engine cycle that incorporates steam injection to dramatically reduce emissions of NOx, a greenhouse gas. The semi-closed system architecture planned for HySIITE will achieve thermal efficiency greater than fuel cells and reduce total operating costs when compared to using “drop-in” sustainable aviation fuels. This is the first direct collaboration between Pratt & Whitney and ARPA-E.
Related Content
-
Composite bipolar plates provide 81% improvement to hydrogen fuel cell power density
Ultra-thin CFRTP plates developed by Hycco achieve a 7.5 kilowatt/kilogram power density, high durability for fuel cells in long-flight drone and heavy-mobility applications.
-
Honda begins production of 2025 CR-V e:FCEV with Type 4 hydrogen tanks in U.S.
Model includes new technologies produced at Performance Manufacturing Center (PMC) in Marysville, Ohio, which is part of Honda hydrogen business strategy that includes Class 8 trucks.
-
Thermoplastic composite pipes provide 59% reduction in H2 distribution CO2 emissions
Hive Composites’ multilayer thermoplastic composite pipe (TPC) design meets hydrogen permeation requirements while ensuring substantial CO2 reductions compared to conventional steel pipe systems.