ÂÌñÏׯÞ

Published

NASA selects American companies for lunar landers, propulsion element

NASA has announced the companies that will conduct research and build prototypes, and build the PPE spacecraft for its Artemis missions.

Share

NASA has announced 11 companies it will work with to conduct studies and produce prototypes of human landers for its Artemis lunar exploration program, as well as the company building the lunar Gateway’s power and propulsion element (PPE). This effort reportedly will help put American astronauts on the Moon’s south pole by 2024 and establish sustainable missions by 2028.

Through Next Space Technologies for Exploration Partnerships (NextSTEP) Appendix E contracts, the selected companies will study and/or develop prototypes during the next six months that reduce schedule risk for the descent, transfer and refueling elements of a potential human landing system.

NASA’s proposed plan is to transport astronauts in a human landing system that includes a transfer element for the journey from the lunar Gateway to low-lunar orbit, a descent element to carry them to the surface, and an ascent element to return to them to the Gateway. The agency also is looking at refueling capabilities to make these systems reusable.

The total award amount for all companies is $45.5 million. As NextSTEP is a public/private partnership program, companies are required to contribute at least 20% of the total project cost. This partnership will reduce costs to taxpayers and encourage early private investments in the lunar economy.

The companies currently announced are:

  • Aerojet Rocketdyne (Canoga Park, Calif.)One transfer vehicle study;
  • Blue Origin (Kent, Wash.): One descent element study, one transfer vehicle study, and one transfer vehicle prototype;
  • Boeing (Houston, Texas): One descent element study, two descent element prototypes, one transfer vehicle study, one transfer vehicle prototype, one refueling element study, and one refueling element prototype;
  • Dynetics (Huntsville, Ala.): One descent element study and five descent element prototypes;
  • Lockheed Martin (Littleton, Colo.): One descent element study, four descent element prototypes, one transfer vehicle study, and one refueling element study;
  • Masten Space Systems (Mojave, Calif.): One descent element prototype;
  • Northrop Grumman Innovation Systems (Dulles, Va.): One descent element study, four descent element prototypes, one refueling element study, and one refueling element prototype;
  • OrbitBeyond (Edison, N.J.): Two refueling element prototypes;
  • Sierra Nevada Corporation (Louisville, Colo. and Madison, Wis.): One descent element study, one descent element prototype, one transfer vehicle study, one transfer vehicle prototype, and one refueling element study;
  • SpaceX (Hawthorne, Calif.): One descent element study; and
  • SSL (Palo Alto, Calif.): One refueling element study and one refueling element prototype.

Separately, NASA also announced on May 23 that Maxar Technologies (Westminster, Colo.) will be the contractor for the PPE for the lunar Gateway, one of the earliest phases of the project.

 

The power and propulsion element reportedly is a high-power, 50-kilowatt solar electric propulsion spacecraft, said to be three times more powerful than current capabilities. As a mobile command and service module, the Gateway will provide communications during lunar expeditions.

 

“To accelerate our return to the Moon, we are challenging our traditional ways of doing business. We will streamline everything from procurement to partnerships to hardware development and even operations,” says Marshall Smith, director for human lunar exploration programs at NASA Headquarters. “Our team is excited to get back to the Moon quickly as possible, and our public/private partnerships to study human landing systems are an important step in that process.”

 

Related Content

PEKK

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Aerospace

First Airbus A350 crash confirmed in Haneda

Shortly after touch-down, a JAL A350-900 aircraft recently collided with a De Havilland Canada Dash 8. Exact circumstances are still unknown.

Read More
Work In Progress

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More
Aerospace

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More

Read Next

ATL/AFP

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Welding

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More