ÂÌñÏׯÞ

Published

NASA begins air taxi flight testing with Joby Aviation

The agency’s AAM National Campaign will apply what is learned about the composite eVTOL aircraft’s performance and acoustic date for future airspace concepts.

Share

Joby Aviation's eVTOL aircraft at the company's Electric Flight Base.

Joby’s eVTOL aircraft is pictured at the company's Electric Flight Base, located near Big Sur, Calif. Photo Credit: Joby Aviation

On Sept. 30 NASA (Washington, D.C., U.S.) began flight testing with Joby Aviation’s (Santa Cruz, Calif., U.S.) all-electric vertical takeoff and landing (eVTOL) aircraft (which recently hit range and noise targets) as part of the agency’s advanced air mobility (AAM) National Campaign. This testing runs through Sept. 10, at Joby’s Electric Flight Base located near Big Sur, Calif. This is the first time NASA will test an eVTOL aircraft as part of the campaign. 

NASA’s goal is to collect vehicle performance and acoustic data for use in modeling and simulation of future airspace concepts. This test will reportedly help identify gaps in current Federal Aviation Administration (FAA) regulations and policies to help incorporate AAM aircraft into the National Airspace System. This multi-event campaign to advance airspace mobility in the U.S. will take place at multiple locations over several years.

“The National Campaign Developmental Testing is an important strategic step in NASA’s goals to accelerate the AAM industry timeline,” says Davis Hackenberg, NASA AAM mission integration manager. “These testing scenarios will help inform gaps in current standards to benefit the industry’s progress of integrating AAM vehicles into the airspace.”

During this round of testing, NASA will collect data from Joby’s eVTOL aircraft, which is intended to serve as a commercial passenger service in the future. Analyzing that data readies the AAM National Campaign to execute the first set of campaign tests, known as NC-1, slated for 2022, with more complex flight scenarios and other industry vehicles.

As the Joby aircraft flies planned test scenarios, the NASA team will collect information about how the vehicle moves, how the vehicle sounds and how the vehicle communicates with controllers. Future partners will fly similar scenarios to evaluate their vehicle readiness.

Moreover, the team will deploy the mobile acoustics facility and construct an array of more than 50 microphones to measure the acoustic profile of Joby’s aircraft in different phases of flight.

“NASA’s AAM National Campaign is critical to driving scientific understanding and public acceptance of eVTOL aircraft,” says JoeBen Bevirt, founder and CEO of Joby Aviation. “We’re incredibly proud to have worked closely with NASA on electric flight over the past 10 years and to be the first eVTOL company to fly as part of the campaign.”

Another element of the testing includes making sure external ranges participating in NC-1 meet the protocols for future testing by establishing a baseline to participate. The team will also test NASA’s flight safety and airworthiness processes to approve participants to fly in the campaign.

According to NASA, when fully integrated into the national airspace, AAM will provide an efficient and affordable system for passenger and cargo transportation, and other applications in the public interest. This system could include aircraft like package delivery drones, air taxis and medical transport vehicles.

The AAM National Campaign is managed by NASA’s AAM project, which plans to be a community catalyst for developing and validating system-level concepts and solutions for AAM. The AAM project is a part of the agency’s Aeronautics Research Mission Directorate.

microwire technology for composites

Related Content

Automotive

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More

Lilium launches M&A process, targets eVTOL program continuation

Despite court-approved insolvency filings and beginning first investor briefings, Lilium remains fully focused on re-emerging following restructuring, setting its sights on fresh investment to support the Lilium Jet.

Read More
Automotive

Composites end markets: Automotive (2024)

Recent trends in automotive composites include new materials and developments for battery electric vehicles, hydrogen fuel cell technologies, and recycled and bio-based materials.

Read More
Prepregs

Aerospace prepregs with braided reinforcement demonstrate improved production rates, cost

A recent time study compares the layup of a wing spar using prepreg with A&P’s TX-45 continuous braided reinforcement versus traditional twill woven prepreg.

Read More

Read Next

Welding

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More
Market Outlook

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Aerospace

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More