ÂÌñÏׯÞ

Published

Mississippi State opens Marvin B. Dow Stitched Composites Development Center

The new research center, built in partnership with Boeing, will work with stitched, resin-infused composites to advance composite materials for aerospace.

Share

Mississippi State University (MSU; Starkville, Miss., U.S.) recently celebrated the opening of a new research center intended to help the university advance the fields of composite materials and aerospace.

MSU hosted a grand opening ceremony for the Marvin B. Dow Stitched Composites Development Center at the MSU Advanced Composites Institute on Friday, April 12. During the event, MSU President Mark E. Keenum noted that the university’s research and development activities, often carried out with government and industry partners, have a substantial impact on Mississippi’s economy, leading to the development of new companies and new jobs.

Boeing (Chicago, Ill., U.S.) selected MSU to create a stitched, resin-infused composites lab that will advance the development of composite structures technology. Through an agreement with the university, Boeing donated lab equipment and provided MSU researchers with additional resources to support the Advanced Composites Institute.

“This center matches so well for the vision that we have for the university in terms of strategic partnerships,” says David Shaw, MSU vice president for research and economic development. “Our best days for collaboration are definitely in our future, rather than in the rearview mirror.”

The center is named after pioneering NASA scientist Marvin B. Dow. While working at NASA Langley Research Center, Dow worked with McDonnell Douglas, which is now part of The Boeing Co., to develop advanced stitched composite designs and manufacturing methods. At the opening ceremony, MSU presented Dow’s daughter, Heather, with a plaque recognizing her father’s rich legacy in the field and his original vision to conduct stitched composites research that will revolutionize the way future aircraft are designed, built and flown.

“Marvin Dow’s ideas have been a game-changer,” says David E. Bowles, director of the NASA Langley Research Center in Hampton, Va., U.S. “When you look at composites today, they really have transformed the aerospace industry.”

Housed at MSU’s Raspet Flight Research Laboratory in Starkville, the Advanced Composites Institute continues the land-grant university’s legacy of innovation in aerospace and materials research and development. ACI is led by director Dennis Smith, head of the MSU Department of Chemistry. With a focus on applied inter-disciplinary research, the center has affiliated faculty members with expertise in chemistry and chemical, mechanical and aerospace engineering. The collaborative environment provides distinct opportunities for graduate and undergraduate students, and enables MSU to work with partners in government and industry to develop new knowledge in composites research and solve complex problems.

The Advanced Composites Institute is a member of the Federal Aviation Administration’s Joint Advanced Materials and Structures (JAMS) Center of Excellence. The center works to maintain a global leadership position in the field of composite materials science, engineering and manufacturing — including resin chemistry and infusion and stitched composites, followed by high temperature cure of large parts in ACI’s new state-of-the-art oven, which measures 50 feet by 20 feet by 10 feet. ACI supports economic development by boosting collaboration, technology transfer and entrepreneurship, in addition to serving as a workforce development and training center for strategic partners and suppliers.

“It’s an honor to have Mississippi State as part of our JAMS Center of Excellence, and we look forward to building on our relationship in the future,” says Ken Knopp, FAA manager of structures and propulsion research.

Raspet Flight Research Lab has served as an incubation space for multiple composite manufacturers that now have permanent Mississippi homes. The lab has served as an incubator for Mississippi-based manufacturing operations of several aerospace companies, including GE Aviation, Airbus Helicopters, Stark Aerospace and Aurora Flight Sciences, a Boeing Company.

microwire technology for composites

Related Content

IACMI

IACMI celebrates 10th anniversary at Members Meeting

Event in Dayton recapped the Institute’s successes, set future goals, celebrated the retirement of COO Dale Brosius and more.

Read More

New online training course targets prepreg basics

JEC World 2024: Composites Expert highlights how its E-Learning Composites Academy platform supports flexible industry learning with new courses developed with Stelia Aerospace North America.  

Read More

Bucci Composites expands automotive production capabilities with facility addition, new high-ton presses

CW Top Shops recipient Bucci Composites shares an update on its facility expansion, automotive composites applications, sustainability, education initiatives and more.

Read More

Daher inaugurates Learning Center for training aeronautical talent

Daher offers a concrete solution to the shortage of qualified professionals in aerospace, providing a range of technical programs that prepare workers for the sector’s rigorous demands.

Read More

Read Next

Hi-Temp Resins

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Carbon Fibers

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Aerospace

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More