ÂÌñÏׯÞ

Published

Italian research agency fights COVID-19 with smart shelters using biocomposites

SOS Smart Operating Shelter project offers fast-build mobile healthcare structures using natural fiber/biopolymer sandwich panels.

Share

Smart Operating Shelter SOS project example of mobile hospital

Source | CETMA

Due to the COVID-19 pandemic, the demand for intensive care beds is rapidly increasing worldwide. The SOS - Smart Operating Shelter - project is an important resource, enabling rapid set up of mobile healthcare units for the treatment of infected patients.

The SOS project is led by the Italian research organization CETMA (Brindisi, Italy), which is also a leader in composites research and by RI SpA (Lecce, Italy), a group leader in modular building construction. The project is co-funded by the Apulian Region (Italy) within the INNONETWORK funding measure. A multidisciplinary Apulian partnership is also involved in the project: Politecnico di Bari, ENEA, ENA Consulting, Kinema, Mespo and Protom Group SpA.

As part of the SOS project, architectural layouts were designed and engineering solutions investigated to quickly set up mobile healthcare units that are easy to assemble and install, with smart and low environmental impact sandwich panels. The know-how acquired in this project will be made available to the regional health system.

Eco-composite panels, multifunctional solutions

One of the main objectives of the SOS project is the development of advanced and eco-friendly materials for structural panels that are multifunctional, smart and reconfigurable, ready for use in just a few hours after arrival, without involving specialized personnel for installation. Research and development issues addressed include:

  1. Innovative sandwich panel inner cores using bio-based polyurethane systems and/or revcycledPET foam;
  2. Eco-friendly composite laminates for external sandwich panel skins using natural fibers and bio-based polymers;
  3. Coupling of the core with the outer skins;
  4. Ability to integrate technical compartments for electrical/IT/medical gases and radiation protection systems;
  5. Reduction of overall dimensions, study of connection systems for facilitated assembly;
  6. Pressure-based containment with particular reference to the seals of the movable and extendable elements; conditioning and filtering systems for clinical environment; surfaces and equipment suitable for sanitization; control and maintenance of indoor comfort, even under extreme climatic conditions;
  7. Operating efficiency of all components, integration of automation solutions, correct operation of each component after each handling and transport;
  8. Certification of clinical environment per government regulations.
  9. Acquisition systems, analysis, design, monitoring and interfacing with intelligent decision support and optimized methodologies, in order to ensure compliance with high performance index of all the integrated services deliverable within the complex innovative structure.

In 2019, CETMA developed an innovative bio-based sandwich panel comprising an inner core made from plant-based and/or recycled PET foam, while the outer skins are composite laminates made with natural fibers and polymeric resins obtained from renewable sources.

SOS panel types for vertical cladding of mobile hospital shelters

SOS – three different panel typologies designed for vertical cladding of the shelters. Source | CETMA

 

In collaboration with the SOS project team, CETMA also devised a technical solution for vertical/horizontal partitions, consisting of three elements: 1-sandwich panel, 2-systems cavity and 3-inner lining panel. Such a solution is very flexible and allows modifying structures for various intended uses. 

CETMA is also engaged in the development of multifunctional structures combining:

  • Self-supporting structure: sandwich panel application for walls, partitions or ceilings;
  • Systems integration: new solutions to more effectively integrate wiring and connections for power supplies, medical gases and data/monitoring systems;
  • Smart monitoring: integration of smart environmental sensors and/or electromagnetic (EM) shielding.

Further information is available at .

Related Content

Glass Fibers

Composites end markets: Sports and recreation (2025)

The use of composite materials in high-performance sporting goods continues to grow, with new advancements including thermoplastic and sustainability-focused materials and automated processes.

Read More
Carbon Fibers

DITF Denkendorf advances sustainable carbon fibers, oxide fibers for CMC and more

The German Institutes of Textile and Fiber Research are targeting more sustainable carbon fiber via low-pressure stabilization and bio-based precursors, and working with Saint-Gobain to commercialize oxide ceramic fibers for CMC.

Read More
Trends

NASCAR unveils BEV prototype featuring natural fiber bodywork

Implementation of Bcomp technical flax fibers in a U.S. motorsport first represents NASCAR’s step toward more sustainable competition vehicles.

Read More
Biomaterials

JEC World 2024 highlights: Glass fiber recycling, biocomposites and more

CW technical editor Hannah Mason discusses trends seen at this year’s JEC World trade show, including sustainability-focused technologies and commitments, the Paris Olympics amongst other topics.

Read More

Read Next

Construction

CETMA: composites R&D and innovation in Italy

From design and simulation to inline inspection, induction welding, continuous compression molding and recycled carbon fiber, this lab to support industry is advancing composites in aerospace, automotive, construction and more.

Read More
Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Carbon Fibers

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More