INVENT GmbH demonstrates sensor network for structural monitoring on composite railcar structures
Patented DuraAct technology uses piezo-ceramics to detect damage in Deutsche Bahn train side skirts as part of faWaSiS research project.

In aerospace, as well as in the automotive industry and in the development and production of rail vehicles, lightweight construction has been an issue for decades — every weight saving reduces emissions and thus also costs when flying into space, traveling through the troposphere or even just getting to work. And whether it is a spaceship or a regional train, the demands on robustness, safety and reliability of the materials are very high and subject to strict specifications. Fiber-reinforced composites also have special damage-mechanical characteristics due to their multilayer and complex structure.

INVENT piezo-ceramic networks were integrated into composite side skirts and tested for seven months on a Deutsche Bahn regional train as part of the faWaSiS project. Photo Credit: Voith Turbo GmbH
But how can the condition of components in use actually be checked? INVENT GmbH (Braunschweig, Germany), together with six partners, has investigated this question with a view to rail transport and developed an integrated, sensor-based diagnostic system in the joint project faWaSiS. This system can significantly reduce the mass of trains by using composite materials more effectively and at the same time detect material damage at an early stage. The key is the use of piezoceramic area transducers.
Structural health monitoring (SHM) aptly sums up what the faWaSiS research project is all about, explains Friedrich von Dungern, head of research & development at INVENT GmbH: “Figuratively speaking, we took a look at the health of a certain lightweight component, specifically the so-called side skirt of a regional train operated by Deutsche Bahn. The side skirt is located below the driver's cab on the right and left in the front area of the train and is exposed to particular loads, from sudden stone impacts from the trackbed to collisions with wild animals or branches. Moreover, despite its non-structural nature, it is a particularly intriguing and relevant research object for the scientists and engineers involved, as such an exposed structure generates a lot of data for evaluation and further development. The focus at faWaSiS was on material selection, design, manufacturing method and component integration.”

Sensor-integrated composite side skirt demonstrator removed after successful completion of the field test in the faWaSiS research project. Photo Credit: .
INVENT GmbH designed, developed and manufactured the copper-shielded integrable network module for the inside of the side skirt as well as the connection components. This was based on preliminary work such as component analysis and calculations by the Institute of Composite Structures and Adaptive Systems of the German Aerospace Center (DLR, Braunschweig, Germany). Another project partner () integrated the network into the manufacturing process of the side skirt, producing the final demonstrators for the field test. “We manufactured a total of three structural monitoring networks and one trade show demonstrator,” explains Jesper de Wit, faWaSiS project manager at INVENT. The seven-month field test with two of the three side skirts in a Deutsche Bahn regional train showed that the network also works successfully in practice. Two side skirts were installed to cover both directions of travel of the train.
We have demonstrated that the integrated network detects damage at an early stage and actively indicates necessary repair measures.
“We have thus demonstrated in theory and practice that the integrated network detects damage at an early stage and actively indicates necessary repair measures,” says INVENT division manager Friedrich von Dungern. The fact that this is possible is due to the piezoelectric transducer networks, which are based on DuraAct technology.

DuraAct patch transducers work both as sensors with variable bandwidth which react to mechanical deformation such as impacts, bending or pressure, and as high-precision controlling elements or bending actuators. Photo Credit:
This technology is patented by DLR and has been industrialized by INVENT GmbH, which installed 32 of the piezo-ceramic sensors in each faWaSiS network. These can excite and receive Lamb waves that and shell structures. A transformation of the waves takes place where there are defects, which can be sensed and used for damage detection by means of complex algorithms. This damage detection capability is being tested in applications including structural health monitoring of thin-walled composites in commercial aircraft.
INVENT claims that piezo-ceramic transducers are ideal for damage detection, damage localization and damage assessment due to their electro-physical properties and ability to cover a wide frequency range with low electrical power consumption in the µW range. “The acceptance of modern, lightweight construction technologies on the railways is to be increased step by step and the possibilities of piezoelectric area transducers are to be made known in a new market segment,” says von Dungern.
The faWaSiS research project was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) under grant number 19|17004. The project sponsor was TÜV Rheinland.
Related Content
Jeep all-composite roof receivers achieve steel performance at low mass
Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.
Read MoreThermoplastic composites: Cracking the horizontal body panel nut
Versatile sandwich panel technology solves decades-long exterior automotive challenge.
Read MoreHonda begins production of 2025 CR-V e:FCEV with Type 4 hydrogen tanks in U.S.
Model includes new technologies produced at Performance Manufacturing Center (PMC) in Marysville, Ohio, which is part of Honda hydrogen business strategy that includes Class 8 trucks.
Read MoreImproving carbon fiber SMC simulation for aerospace parts
Simutence and Engenuity demonstrate a virtual process chain enabling evaluation of process-induced fiber orientations for improved structural simulation and failure load prediction of a composite wing rib.
Read MoreRead Next
All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat
Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.
Read MoreComposites end markets: New space (2025)
Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.
Read MoreDeveloping bonded composite repair for ships, offshore units
Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.
Read More