ÂÌñÏׯÞ

Published

Impossible Objects, Owens Corning to produce new high-performance 3D printing materials

Collaboration will develop tailor-made materials for composite-based AM, bring CBAM process to industrial scale to compete with other high-volume manufacturing methods.

Share

Impossible Objects 3D-printed solder pallets.

Carbon fiber/PEEK and fiberglass/PEEK solder pallets produced with the Impossible Objects’ CBAM-2 printer. These parts, used in electronics manufacturing, must withstand high temperatures and harsh chemicals.. Photo Credit: Impossible Objects

Impossible Objects (Northbrook, Ill., U.S.) has announced a joint development agreement with Owens Corning (Toledo, Ohio, U.S.) to develop new materials for Impossible Objects’ composite-based additive manufacturing (CBAM) process.

The collaboration with Owens Corning, a global building and industrial materials leader, will reportedly enable the production of stronger parts at costs lower than other 3D printing processes. According to Impossible Objects, fiberglass composites boast key advantages for 3D-printed parts, including substantially greater strength-to-weight ratios compared to aluminum, lower costs, superior high-temperature performance and greater chemical resistance. Lowering material cost is important for broadening adoption of additive manufacturing (AM); has shown that costs of materials used in 3D printing can be higher than traditional manufacturing materials by up to a factor of eight on a per-weight basis.

“Owens Corning is committed to the development of composite materials and their applications,” says Dr. Chris Skinner, vice president of Strategic Marketing, Composites, Owens Corning. “We seek to be at the forefront of new processing and new applications involving composites. We have found the Impossible Objects technology and know-how potentially transformative for the conversion of some applications to composites. Because we believe it can be successful and deliver value to the market and our customers, we’ve entered into a joint agreement to support the development further.”

According to Robert Swartz, chairman and founder of Impossible Objects, the company’s CBAM process offers 3D printing with faster speeds, better material properties and wider material selection. “This collaboration with Owens Corning will allow us to quickly experiment with and refine new materials to significantly lower cost and bring unprecedented options for additive manufacturing,” Swartz says.

Impossible Objects’ proprietary CBAM technology is said to produce parts up to ten times faster than conventional fused deposition modeling (FDM) 3D printing. By combining high-performance polymers like Nylon and PEEK with carbon fiber and fiberglass nonwoven materials, parts printed with Impossible Objects machines are said to be stronger, lighter, have better dimensional accuracy and have better temperature performance than what’s possible with conventional 3D printing methods. The CBAM process can use a great variety of long-fiber materials including carbon fiber and fiberglass paired with PEEK, PA 6, PA 12, elastomerics and most other thermoplastics. Additional are also being processed.

By bringing together Impossible Objects’ CBAM process and Owens Corning’s fully integrated glass nonwoven manufacturing capabilities, the joint development agreement will allow the scaling of the CBAM process to industrial scale, enabling it to compete with other high-volume manufacturing methods like injection molding. The CBAM process can eliminate the long lead-times and tooling costs involved in injection molding, while enabling mass customization of parts. CBAM also allows for the combination of parts, resulting in lower assembly costs.

Owens Corning is the latest materials leader to join forces with Impossible Objects to enable the development of the CBAM process. In May 2019, the chemical company BASF (Wyandotte, Mich., U.S.) entered a collaboration with Impossible Objects to 3D print high-performance carbon fiber-PA6 composite parts for the first time. Also in 2019,  (Wels, Austria) began work with Impossible Objects for the development of thermoset-based 3D printed composites. More recently, the company has joined 3D printing specialist Ricoh 3D (Shropshire, U.K.) to make strong and lightweight printed composite parts available to Ricoh 3D’s customers in Europe for the first time.

Related Content

Carbon Fibers

Bladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts

HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.

Read More
Glass Fibers

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More
Marine

Revisiting the OceanGate Titan disaster

A year has passed since the tragic loss of the Titan submersible that claimed the lives of five people. What lessons have been learned from the disaster?

Read More
Thermoplastics

Welding is not bonding

Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.

Read More

Read Next

Carbon Fibers

UAMMI, Impossible Objects build composite parts for U.S. Air Force

UAMMI is using Impossible Objects’ composite 3D printing technology to build 3D-printed carbon fiber/thermoplastic replacement parts for defense aircraft.

Read More
Sustainability

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
Sustainability

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More