ÂÌñÏׯÞ

Published

Collaborators awarded NIST funding to develop in-space manufacturing roadmap

Purdue, the University of New Hampshire and the University of Alabama will work with NASA to develop a roadmap for in-space manufacturing.

Share

illustration of NASA Orion spacecraft
Photo Credit: NASA

A new program to enable commercialization, industrialization and democratization of in-space manufacturing (ISM) is being undertaken by collaborators from from NASA, Purdue University’s College of Engineering (West Lafayette, Ind., U.S.), the University of New Hampshire (UNH, Durham) and the University of Alabama (Tuscaloosa). 

Through the National Institute of Standards and Technology (NIST, Gaithersberg, Md., U.S.)  (MfgTech), more than $3.25 million has been awarded in 2022 to universities and nonprofit organizations to develop manufacturing technology roadmaps to strengthen U.S. innovation and productivity across entire industry sectors. 

In May 2022, UNH and collaborators were  by NIST to explore a new paradigm in manufacturing for the equitable commercialization, industrialization and democratization of ISM. To create the roadmap, researchers will analyze barriers to commercializing a space-based manufacturing economy, recommend solutions and develop guides that will help strengthen U.S. leadership in space, economic growth and national defense.

Purdue team members include: Ajay Malshe, the R. Eugene and Susie E. Goodson Distinguished Professor of Mechanical Engineering; Michael Sealy, associate professor of mechanical engineering; Salil Bapat, staff research scientist; Steve Shade, Ball Brothers Director of Advanced Manufacturing Initiatives; and Luz Sotelo, who will start as an assistant professor of mechanical engineering in spring 2023.

“If we are going to build the economy between here and the moon — if we’re going to put that flag in the ground — the first thing we need to build is infrastructure. Manufacturing is the very heart of that infrastructure,” Malshe says.

The team, along with industrial, government and academic partners, will analyze technical and commercial gaps for a space-based manufacturing economy, such as in low-earth orbit (LEO) and on the lunar surface.

There is a growing demand for launching satellites, supplies and spare parts into space via rockets, which carries an expensive price tag, not to mention demanding efficiency. The long-term vision for the success of ISM must explore complex issues such as logistics and supply chain in extreme environments, operating manufacturing processes like 3D printing in zero gravity, maintenance, qualifying parts manufactured in space, gathering raw materials, building space-friendly robots, autonomous vehicles and many more.

“While manufacturing processes and supply chain systems have been optimized for the fabrication of products on Earth, extensive fundamental and applied R&D related to ISM must be conducted. Our roadmapping effort will identify and prioritize the technical barriers in order to accelerate the commercialization and democratization of space,” says Brad Kinsey, professor of materials science and mechanical engineering at the John Olson Advanced Manufacturing Center.

This will be the world’s first private sector-driven roadmapping effort in ISM specifically for commercial applications. Any roadmapping effort typically attracts small and large industries, which is very important, Malshe says.

“NASA is very interested in this roadmap effort to explore transformative approaches for in-space manufacturing that aim to provide benefits both on Earth and in space,” says John Vickers, principal technologist for advanced manufacturing at NASA, is one of the project collaborators. “Advanced research and technology demonstrations will be essential for deep space exploration and development of commercial capabilities for future U.S. leadership in space.” 

Additional team members include James Reilly, retired NASA astronaut who now leads the Advanced & In-Space Manufacturing Initiative partnership between the University of Alabama and NASA’s Marshall Space Flight Center, and John Roth, professor of mechanical engineering and director of the John Olson Advanced Manufacturing Center at UNH.

Related Content

Prepregs

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Space

NASA launches composite solar sail into space

Sunlight-based propulsion system, supported by carbon fiber-reinforced booms, will undergo weeks-long testing to demonstrate and verify its capabilities.

Read More

CIRA qualifies CMC structures for the reusable Space Rider

Italian team designs, builds and tests multiple large, complex thermal protection system structures made from patented ISiComp C/C-SiC ceramic matrix composites.

Read More
Prepregs

Revolutionizing space composites: A new era of satellite materials

A new approach for high volumes of small satellite structures uses low-CTE, low-cost CFRP cellular core, robust single-ply skins and modular panel systems to cut lead time, labor and cost for reflectors, solar arrays and more.

Read More

Read Next

Natural Fibers

Scaling up, optimizing the flax fiber composite camper

Greenlander’s Sherpa RV cab, which is largely constructed from flax fiber/bio-epoxy sandwich panels, nears commercial production readiness and next-generation scale-up.

Read More
Welding

Ultrasonic welding for in-space manufacturing of CFRTP

Agile Ultrasonics and NASA trial robotic-compatible carbon fiber-reinforced thermoplastic ultrasonic welding technology for space structures.

Read More
Aerospace

Next-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly

MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.

Read More