Chomarat glass fiber reinforcement lightens mass-produced auto parts
G-PLY, developed for KraussMaffei’s HP-RTM process, reportedly delivers weight savings of 60% for leaf springs.

Source | Chomarat
Chomarat Group (Ardèche, France) has developed a stitched unidirectional (UD) glass fiber reinforcement adapted for mass production of automotive leaf springs. Reportedly 60% lighter compared to steel parts, the leaf springs are produced through KraussMaffei (München, Germany) with Chomarat and other partners.
Chomarat G-PLY glass fiber reinforcement developed for the project is adapted to the high-pressure resin transfer molding (HP-RTM) process used to produce the leaf spring. The fabric’s design is said to offer an improved permeability that allows the resin flow through the multiple plies of the preforms. Chomarat says that corrosion resistance and the ability to increase the material’s strength in certain sections of the part were additional benefits.
“We created the fabrics, Engenuity developed the component, Huntsman supplied the matrix system made of epoxy resin, Johns Manville supplied the glass fibers, Schmidt & Heinzmann manufactured the preforms, Alpex designed the [resin transfer molding] RTM mold and Hufschmied took charge of post-mold processing of the component by milling. KraussMaffei has taken over the project management for Hengrui and coordinates the project with the partners,” says Francisco De Oliveira at Chomarat.
“This new reinforcement includes a binder to allow preform stability and automatization onto the cutting and stacking processes. Chomarat strengthens its developments for the automotive industry by offering a new generation of reinforcements, usable in short cycle time process,” adds De Oliveira.
Related Content
-
Industrializing additive manufacturing in the defense/aerospace sector
GA-ASI demonstrates a path forward for the use of additive technologies for composite tooling, flight-qualified parts.
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
-
3D-printed CFRP tools for serial production of composite landing flaps
GKN Aerospace Munich and CEAD develop printed tooling with short and continuous fiber that reduces cost and increases sustainability for composites production.