ÂÌñÏׯÞ

Published

Get ready for Composites 4.0!

It might seem like science fiction, but it must be our path if we are to make composites competitive.

Dale Brosius , Contributing Writer, Institute for Advanced Composites Manufacturing Innovation (IACMI)

Share

In April, I participated for the first time in the Hannover Fair, perhaps the largest industrial technology exhibition in the world. The week-long event filled 16 halls and featured innovations in energy, automation, robotics, sensing and other topics. I was in the USA Research and Technology Pavilion, representing the Institute for Advanced Composites Manufacturing Innovation (IACMI, Knoxville, TN, US) in the National Network for Manufacturing Innovation booth. On display there was the full-scale Shelby Cobra electric vehicle which features a body 3D-printed using a carbon fiber-reinforced thermoplastic. It attracted a lot of attention because most people are unfamiliar with 3D printing items larger than a shoebox!


I did get the opportunity to walk around the show one day. I found only a few advanced composites applications or technologies on display; most notably, the use of carbon fiber components to make equipment lighter, thus able to move parts around with less inertia. However, what fascinated me most were two over-arching technological themes: The Internet of Things (IoT), and Industry 4.0 (Industrie 4.0 in Germany, where the term was coined in 2011). Although these themes are not composites specific, they will have an enormous impact on the advanced composites industry — assuming we choose to leverage the power of the tools they represent.

So what do we mean by IoT and Industry 4.0? We’re talking industrial revolutions: The first was defined by water and steam power, the second by the assembly line and electricity, and the third by robots and computers. This is the fourth. Because the terms IoT and Industry 4.0 are relatively new, definitions are fluid, but Wikipedia provides a cogent starting point: Industry 4.0 is a collective term that embraces a number of contemporary automation, data exchange and manufacturing technologies. It draws together Cyber-Physical Systems, the Internet of Things and the Internet of Services. Industry 4.0 facilitates the vision and execution of a Smart Factory. Within the modular, structured Smart Factories of Industry 4.0, Cyber-Physical Systems monitor physical processes, create a virtual copy of the physical world and make decentralized decisions. Over the Internet of Things, these Cyber-Physical Systems communicate and cooperate with each other and with humans in real time, and via the Internet of Services, both internal and cross-organizational services are offered and used by participants in the value chain.

These technologies will be able to reduce the costs of traditional metallic fabrication a little, but there is a lot of opportunity for cost reduction in the world of composites. As we all know, the high cost of advanced composites is a major barrier to market penetration. For composites, smarter, faster layup and molding processes with improved quality and reliability will be able to meet required production rates in industrial and aerospace markets. Most significantly, there will be a great reduction in rework and inspection and greater consistency.

At Hannover, two halls were filled with sensors that can be connected in all kinds of ways, with wireless transmission clearly the path of the future. Accurate, miniature, and most important, increasingly cheaper, these sensors can measure angles, position, dimensions, temperatures, pressures, impedance, light, electrical resistance — almost any physical state of a material — and relay that information to a Big Data collection repository. This is largely the realm of the Internet of Things — stuff that can talk to other stuff. But data are just that — data. What we need is to transform that data into information and then, using knowledge of the physical relationships between these inputs, make decisions based on them. In real time. This is where Industry 4.0 kicks in.

So, for composites, this means we can verify immediately the fiber orientations of every ply laid by a machine and whether or not all the expected fiber tows are present. We can know the exact state of cure within a mold and if it is where we expect it to be. And we can know if the process is drifting. The software in the system makes the appropriate adjustment(s) to the process — inserting
 a missing tow before the next ply is laid up, or changing the mold temperature, the injection rate, the catalyst ratio, mold pressure, vacuum level or some other parameter — without human intervention. The machines are able to do this because we have developed a virtual twin of the process via simulation.

Throw in light weight, along with fast robots to move materials and parts through the process, and automatically inspect them and get them onto the next step — assembly or shipment — then you have the factory of the future. It might seem like science fiction, but it must be our path if we are to make composites the most competitive materials of the next generation.

Related Content

Feature

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Prepregs

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More
Focus on Design

Design for manufacturing, assembly and automation enables complex CFRP telescope supports

Airborne delivered two mirror support structures for the FYST and SOLAT telescopes, assembling 26,300 components while maintaining near-zero CTE, strict tolerances on 6.5 × 6.5 × 1.8-meter assemblies.  

Read More
Aerospace

ASCEND program completion: Transforming the U.K.'s high-rate composites manufacturing capability

GKN Aerospace, McLaren Automotive and U.K. partners chart the final chapter of the 4-year, £39.6 million ASCEND program, which accomplished significant progress in high-rate production, Industry 4.0 and sustainable composites manufacturing.

Read More

Read Next

Plant Tours

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More
ATL/AFP

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Welding

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More