ÂÌñÏׯÞ

Published

Get ready for Composites 4.0!

It might seem like science fiction, but it must be our path if we are to make composites competitive.

Dale Brosius , Contributing Writer, Institute for Advanced Composites Manufacturing Innovation (IACMI)

Share

In April, I participated for the first time in the Hannover Fair, perhaps the largest industrial technology exhibition in the world. The week-long event filled 16 halls and featured innovations in energy, automation, robotics, sensing and other topics. I was in the USA Research and Technology Pavilion, representing the Institute for Advanced Composites Manufacturing Innovation (IACMI, Knoxville, TN, US) in the National Network for Manufacturing Innovation booth. On display there was the full-scale Shelby Cobra electric vehicle which features a body 3D-printed using a carbon fiber-reinforced thermoplastic. It attracted a lot of attention because most people are unfamiliar with 3D printing items larger than a shoebox!


I did get the opportunity to walk around the show one day. I found only a few advanced composites applications or technologies on display; most notably, the use of carbon fiber components to make equipment lighter, thus able to move parts around with less inertia. However, what fascinated me most were two over-arching technological themes: The Internet of Things (IoT), and Industry 4.0 (Industrie 4.0 in Germany, where the term was coined in 2011). Although these themes are not composites specific, they will have an enormous impact on the advanced composites industry — assuming we choose to leverage the power of the tools they represent.

So what do we mean by IoT and Industry 4.0? We’re talking industrial revolutions: The first was defined by water and steam power, the second by the assembly line and electricity, and the third by robots and computers. This is the fourth. Because the terms IoT and Industry 4.0 are relatively new, definitions are fluid, but Wikipedia provides a cogent starting point: Industry 4.0 is a collective term that embraces a number of contemporary automation, data exchange and manufacturing technologies. It draws together Cyber-Physical Systems, the Internet of Things and the Internet of Services. Industry 4.0 facilitates the vision and execution of a Smart Factory. Within the modular, structured Smart Factories of Industry 4.0, Cyber-Physical Systems monitor physical processes, create a virtual copy of the physical world and make decentralized decisions. Over the Internet of Things, these Cyber-Physical Systems communicate and cooperate with each other and with humans in real time, and via the Internet of Services, both internal and cross-organizational services are offered and used by participants in the value chain.

These technologies will be able to reduce the costs of traditional metallic fabrication a little, but there is a lot of opportunity for cost reduction in the world of composites. As we all know, the high cost of advanced composites is a major barrier to market penetration. For composites, smarter, faster layup and molding processes with improved quality and reliability will be able to meet required production rates in industrial and aerospace markets. Most significantly, there will be a great reduction in rework and inspection and greater consistency.

At Hannover, two halls were filled with sensors that can be connected in all kinds of ways, with wireless transmission clearly the path of the future. Accurate, miniature, and most important, increasingly cheaper, these sensors can measure angles, position, dimensions, temperatures, pressures, impedance, light, electrical resistance — almost any physical state of a material — and relay that information to a Big Data collection repository. This is largely the realm of the Internet of Things — stuff that can talk to other stuff. But data are just that — data. What we need is to transform that data into information and then, using knowledge of the physical relationships between these inputs, make decisions based on them. In real time. This is where Industry 4.0 kicks in.

So, for composites, this means we can verify immediately the fiber orientations of every ply laid by a machine and whether or not all the expected fiber tows are present. We can know the exact state of cure within a mold and if it is where we expect it to be. And we can know if the process is drifting. The software in the system makes the appropriate adjustment(s) to the process — inserting
 a missing tow before the next ply is laid up, or changing the mold temperature, the injection rate, the catalyst ratio, mold pressure, vacuum level or some other parameter — without human intervention. The machines are able to do this because we have developed a virtual twin of the process via simulation.

Throw in light weight, along with fast robots to move materials and parts through the process, and automatically inspect them and get them onto the next step — assembly or shipment — then you have the factory of the future. It might seem like science fiction, but it must be our path if we are to make composites the most competitive materials of the next generation.

Related Content

Aerospace

Hexcel introduces mid-temp Flex-Core HRH-302 honeycomb core

Bismaleimide (BMI) option to serve complex curvatures and thermal management needs of military, commercial and UAM aircraft.

Read More
CAMX

Raw materials distributor provides quality fiberglass, resin variety

CAMX 2024: Imate Composites presents a variety of resins, fiberglass and roving products, as well as mats and catalysts. 

Read More
Fabrics/Preforms

Monadnock HTAC Veil protects GFRP equipment against corrosion

Binder-free ECTFE-apertured reinforcement maintains a high resistance against chemicals and abrasion at high temperatures, extending performance and integrity of composite systems.

Read More
Defense

Call for abstracts: CW Tech Days to explore high-temperature composite solutions

The fall 2025 installment of CW’s Tech Days online event series will cover high-temperature composite solutions for defense and space applications.

Read More

Read Next

Glass Fibers

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Focus on Design

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Welding

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More