ÂÌñÏׯÞ

Published

The clarity of the retrospectroscope

My mind is easily distracted and consumed by the time-space continuum. Not the Star Trek kind, but the real-life kind.

Share

My mind is easily distracted and consumed by the time-space continuum. Not the Star Trek kind, but the real-life kind. Fact is, I’m intrigued by the messy swirl of random events and direct human action that shapes our history — like the iceberg that floated in front of the Titanic and the helmsman who happened not to see it, or Hans von Pechmann, who in 1898 accidentally heated diazomethane to create what is now known as polyethylene. (Some people call this fate, but I’m not one of them — I’m more of a chaos guy.)

The problem with studying history, of course, is the unusual clarity provided by the retrospectroscope (as my dad calls it). Looking back across the landscape of time to the construction and sailing of the Titanic, we can easily see the fatal flaws in ship design and lifeboat outfitting that doomed those unfortunate passengers. And we assume, to a certain degree, that as soon as Pechmann discovered polyethylene, he rushed out and started molding airtight containers in which to store our leftover mashed potatoes (he didn’t — polyethylene wasn’t even commercialized until 1935).

The real challenge in studying history, however, is better understanding the context of the event, because those living through historical events don’t have a retrospectroscope through which to look: They make decisions based on the information available at that time. Two of our features this month play on this theme in different ways.

The first, “Market Trends” (see “Related Content,” at left), looks back 15 years at an R&D effort that tried to prove to the aircraft industry the viability of a continuously wound aircraft fuselage. The idea was rejected. Looking back, with the carbon-intensive 787 Dreamliner rolling out early this month, this rejection is a head-scratcher. What was the hold-up? The fact is that aircraft manufacturers were not intellectually prepared to accept a continuously wound fuselage, and fiber placement technology was not sufficiently evolved to provide the laydown rates required. That rejection was probably a necessary step in the evolution that led to the development of the Dreamliner.

The second story is our “Focus on Design” (see “Related Content”), which explores the design and development of the carbon fiber engine subframe on the Lamborghini Roadster. It’s an interesting review of the material, fiber, and process combinations with which Lamborghini experimented to build this structural part. Parts like this are engineering marvels, but given that it’s on a vehicle that, at $328,000, costs more than an average American home, I can’t help but wonder if composites will forever nibble at the edge of the mainstream automotive industry.

Yet, if I fast-forward a decade, it seems possible to me that we’ll look back on these high-priced, high-end Lamborghini-like applications as the early, natural stages of the migration of structural composites into the automotive industry, like the first carbon fiber parts on fighter jets. In fact, this maturation might be much closer — we know that a sub-two-minute composites process for automotive application is tantalizingly close at hand.

And take a look at our two features on burgeoning composites use in wind energy applications (see “Related Content”). In some ways, putting composites use here into historical context is easier. Rising oil prices, a finite oil supply and China’s blooming demand for energy set a natural stage for a healthy, happy and growing wind energy industry that is heavily dependent on composites. Still, I wonder where all of this wind energy activity will be 10 years from now. We’ll let you know just as soon as we figure it out.

Related Content

Ketones

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Feature

Industrializing additive manufacturing in the defense/aerospace sector

GA-ASI demonstrates a path forward for the use of additive technologies for composite tooling, flight-qualified parts.  

Read More
Pressure Vessels

Development of a composite liquid hydrogen tank for commercial aircraft

Netherlands consortium advances cryogenic composites testing, tank designs and manufacturing including AFP, hybrid winding, welding of tank components and integrated SHM and H2 sensors for demonstrators in 2025. 

Read More
Hi-Temp Resins

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More

Read Next

Core

Cutting 100 pounds, certification time for the X-59 nose cone

Swift Engineering used HyperX software to remove 100 pounds from 38-foot graphite/epoxy cored nose cone for X-59 supersonic aircraft.

Read More
RTM

Next-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly

MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.

Read More
Ceramic Matrix Composites

Ceramic matrix composites: Faster, cheaper, higher temperature

New players proliferate, increasing CMC materials and manufacturing capacity, novel processes and automation to meet demand for higher part volumes and performance.

Read More