ÂÌñÏׯÞ

Published

Benzoxazine: An alternative to phenolic for interior fire safety?

As research into benzoxazine resin chemistry proceeds, this budding high-performance system has the potential to challenge phenolic resins in aircraft interiors.

Share

As research into benzoxazine resin chemistry proceeds, this budding high-performance system has the potential to challenge phenolic resins in aircraft interiors. Proponents claim it offers the fire-safety of phenolic resin without its void content and other processing challenges. Although some users caution that benzoxazine has not yet attained the maturity of bismaleimide (BMI) and still requires development in several areas, including out-of-autoclave (OOA) processing, Matrix Composites (Rockledge, Fla.) president Dave Nesbitt sees a future for benzoxazine applications in the interiors of aircraft and other modes of transportation, especially using resin transfer molding (RTM).

“It’s better suited to closed-molding applications compared to phenolic,” Nesbitt claims. “As a result, we can now offer the benefits of highly integrated structures to applications previously limited to conventional autoclave-cured phenolics. It’s another tool in our tool chest, and new systems like this enable us to offer optimized solutions to our customers.”

Resin supplier Huntsman Advanced Materials’ (Basel, Switzerland and The Woodlands, Texas) composites marketing manager, Carl Holt also contends that “benzoxazine has better fire, smoke and toxicity (FST) properties than epoxies.” The resin reportedly has very good heat-release rates, can meet OSU 65/65 (a fire safety standard established by Ohio State University), has low burn times (a short time before self-extinguish) and exhibits very benign smoke toxicity and low smoke density. “No solvent is needed for prepregs, for example, and benzoxazine produces void-free laminates very well using RTM,” he adds, noting that in RTM, it could be the easiest to use because, he claims, “phenolic generates too much water to use with that process.”

David Leach, global composites segment manager for Henkel Aerospace (Bay Point, Calif.), points to other factors. “Phenolics,” he reports, “release formaldehyde when they cure. Without proper precautions, this “causes environmental and health safety issues, and the volatiles cause porosity, which requires rework.” Henkel also believes that using benzoxazine prepreg could eliminate the postsecondary operations currently required when the finished surface quality of phenolic composites is an issue.

Gurit (Isle of Wight, U.K.) launched its PB1000 benzoxazine prepreg for interiors in 2008. Product development manager Paul Spencer explains, “We produce a lot of phenolic prepreg and began looking at next-generation materials that would match phenolic performance but be easier to manufacture, giving us flexibility at production sites, worldwide. We were also looking for customer processing improvements.” PB1000 was originally targeted for rail and aerospace, but FST regulations for rail vary by country and only underground or tunnel trains must meet more stringent requirements, similar to aerospace but still not quite as high. “We had several structural materials for aerospace and wanted to build on that capability.”

“Phenolic is very cheap,” Spencer admits, “so we are looking at more structural applications, where halogenated epoxy is no longer acceptable, or where improved handling and processing over phenolics is required.” He contends that benzoxazine’s reported cheaper prepregging and increased part surface quality could help offset its higher cost. “For example, reworking accounted for up to 60 percent of the cost for phenolic composite panels in rail interiors,” he contends. Although PB1000 has earned no commercial applications yet, qualifications are beginning with several manufacturers.

Related Content

Automotive

Bladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts

HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.

Read More

JEC World 2024 highlights: Glass fiber recycling, biocomposites and more

CW technical editor Hannah Mason discusses trends seen at this year’s JEC World trade show, including sustainability-focused technologies and commitments, the Paris Olympics amongst other topics.

Read More
Recycling

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Focus on Design

CirculinQ: Glass fiber, recycled plastic turn paving into climate solutions

Durable, modular paving system from recycled composite filters, collects, infiltrates stormwater to reduce flooding and recharge local aquifers.

Read More

Read Next

Carbon Fibers

Developing bonded composite repair for ships, offshore units

Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.

Read More
Thermoplastics

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More
Finishing & Fastening

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More