ÂÌñÏׯÞ

Published

Digital chemistry platform leverages physics-based modeling for enhanced workflow

CAMX 2024: Schrödinger introduces a digital chemistry software platform, designed to enable researchers to tackle materials challenges across diverse polymer resin and carbon fiber applications.

Share

Source | Schrödinger

(New York, N.Y., U.S.) introduces a digital chemistry software platform enabling the quick and cost-effective discovery of high-quality, novel molecules for materials applications. With Schrödinger’s digital chemistry platform, users can access advanced computational solutions leveraging physics-based modeling, machine learning and enterprise informatics to understand and predict product performance of polymers and composites at molecular and atomic scales. These solutions can enable researchers to tackle materials challenges across diverse polymer resin and carbon fiber applications.

Composite industry tailored workflows, tutorials and online courses are designed to enable companies to integrate digital chemistry into their existing workforce with minimal time and effort. Customized support is provided by Schrödinger’s polymer, composite and surface chemistry scientists.

Schrödinger’s software helps identify high-performance composites by:

  • Modeling moisture aging and morphological stability in polymer composites
  • Predicting glass transition, thermal stability and thermal expansion with custom resin formulations
  • Predicting resin sizing compatibility for natural fibers
  • Aiding in root cause analysis of materials-related issues.

At its booth, Schrödinger is providing a live demo on composite modeling. In addition, a presentation, “A multi-scale framework to determine effects of environmental conditions on composite parts using molecular dynamics and finite-element methods” by David Nicholson, principal scientist at Schrödinger, is available to visitors. It takes place on Tuesday, Sept. 10 from 2:30 – 2:55 p.m.

Related Content

Related Content

Focus on Design

Carbon fiber/flax landing gear achieves 54% weight reduction via tailored layup optimization

Fuko’s Biogear showcases how strategic composite material distribution and natural fiber damping properties can lightweight and enhance critical aerospace structure performance.

Read More
Digitization

Schrödinger advances materials informatics for faster development of next-gen composites

Cutting time to market by multiple orders of magnitude, machine learning and physics-based approaches are combined to open new possibilities for innovations in biomaterials, fire-resistant composites, space applications, hydrogen tanks and more.

Read More
Trends

Embraer conducts composite structural wing testing for PDNT

New technologies demonstration platform (PDNT), validating innovative processes, methodologies and new materials, exceeded more than 200% of expected progressive load limit.

Read More
Repair

Determining steel/composite failure load of bonded repair assemblies

Bureau Veritas and partners use a novel equivalent interface test specimen and simulation to predict failure load in bonded composite patch repairs to steel structures.

Read More

Read Next

Design/Simulation

CoreTech, Xnovo bring 3D imaging to Moldex3D molding software

Moldex3D users will now be able to conduct accurate 3D fiber orientation simulations using calibrated fiber parameters.

Read More

COMSOL releases version 6.0 for multiphysics simulation software

COMSOL Multiphysics introduces platform feature for model management, adds module for uncertainty quantification analysis and includes important updates and performance enhancements, all with boosted productivity in mind.

Read More
Application

Scaling up, optimizing the flax fiber composite camper

Greenlander’s Sherpa RV cab, which is largely constructed from flax fiber/bio-epoxy sandwich panels, nears commercial production readiness and next-generation scale-up.

Read More