Sino Polymer develops high-performance epoxy resin prepreg
Used in railway applications, the carbon fiber prepreg can be cured at 150℃ for 10 minutes, and is suitable for structural parts requiring Tg within 120-140℃.
Originally focused on aerospace and military application, (Shanghai, China), has recently developed high-performance epoxy resin systems, including EN45545, a flame-retardant epoxy resin system for carbon fiber prepreg that can be used in railway applications. The system retains halogen-free and low smoke density/toxicity properties and a long shelf life.
Using this epoxy resin system, Sino Polymer says, its carbon fiber (T-300) prepreg has recently passed the EU EN45545-2 R1 test and reached HL3, the highest flame-retardant level. Further, the company notes the prepreg can be cured at 150℃ for 10 minutes, is suitable for structural parts requiring Tg within 120-140 ℃, retains a shelf life at room temperature (60 days at 21-23 ℃) and can be stored for up to 18 months at 18 ℃.
Sino Polymer has also developed systems for wind energy and marine applications, including two room temperature, fast-curing component epoxy resins to infuse with fiberglass for fabricating FRP wind turbine parts and boats, which can be cured in 1.5-2 hours, and two-component epoxy resins for carbon fiber wind blade spar caps using a pultrusion process. Other systems are available for processes such as hand layup and filament winding.
This post is courtesy of the ÂÌñÏ×ÆÞ and media partnership.
Related Content
-
The next evolution in AFP
Automated fiber placement develops into more compact, flexible, modular and digitized systems with multi-material and process capabilities.
-
Plant tour: Hexagon Purus, Kassel, Germany
Fully automated, Industry 4.0 line for hydrogen pressure vessels advances efficiency and versatility in small footprint for next-gen, sustainable composites production.
-
ASCEND program completion: Transforming the U.K.'s high-rate composites manufacturing capability
GKN Aerospace, McLaren Automotive and U.K. partners chart the final chapter of the 4-year, £39.6 million ASCEND program, which accomplished significant progress in high-rate production, Industry 4.0 and sustainable composites manufacturing.