ÂÌñÏׯÞ

Published

Shin-Etsu Chemical Co. to manufacture, market new hydrocarbon resins for 5G electronics, aerospace

Developed per a licensing agreement with materials company Novoset LLC, the resins are said to possess ultra-low dielectric loss properties for electronics.

Share

 

laptop smartphone stock image

 

Materials company  (Peapack, New Jersey, U.S.) announced on Dec. 26 that it has signed a licensing agreement with Shin-Etsu Chemical Co. Ltd. (Tokyo, Japan) for the manufacturing and marketing of modified hydrocarbon resins based on Novoset’s intellectual property, which will target applications in electronics, automotive and aerospace.

The new resins are said to exhibit ultra-low dielectric loss properties at high frequencies, low coefficient of thermal expansion (CTE), very low moisture absorption, high glass transition temperatures (Tg) and long-term thermo-oxidative stability at 250°C.

These products are targeted for a range of 5G applications such as chip encapsulation, underfill, molding compounds, millimeter wave base station infrastructure for smartphones, high layer count printed circuit board (PCB) servers, routers for cloud computing and semiconductor packaging. Novoset says that these resins are specifically designed for use in devices enabling next-generation 5G technologies like Advanced Driver Assistance Systems (ADAS).

 

 

These products are also reportedly suitable for various aerospace applications where ultra-low dielectric, low moisture properties and high Tg are required. In addition, the materials can be used in aerospace processes such as resin infusion, hot melt prepreg, filament winding and other liquid processes.

Novoset officials said in a press release, “We are pleased to collaborate with Shin-Etsu Chemical, Japan to commercialize these unique products to address material gaps and difficult-to-process current 5G materials (targeted to millimeter wave substrates, antennas) such as liquid-crystal polymers (LCP), polyimides (PI) and polytetrafluorethylene (PTFE). Shin-Etsu Chemical is our ideal collaborator due to their in-house 5G applications and global footprint in semiconductors and other high-end industries.”

The resins were developed at Novoset Technology Center in Berkeley Heights, N.J., U.S. Under this agreement, Shin-Etsu Chemical Co. Ltd. will manufacture the resins globally in the relevant electronics industries and market the products under SLK name. Novoset will market the products in aerospace, oil and gas, and other industries, and will continue to improve and expand the range of products according to market needs.

Related Content

Aerospace

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More

Improving carbon fiber SMC simulation for aerospace parts

Simutence and Engenuity demonstrate a virtual process chain enabling evaluation of process-induced fiber orientations for improved structural simulation and failure load prediction of a composite wing rib.

Read More

Carbon fiber, bionic design achieve peak performance in race-ready production vehicle

Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.

Read More
Automotive

Co-molding SMC with braided glass fiber demonstrates truck bed potential

Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.

Read More

Read Next

Aerospace

Nanomaterials: Products, supply chain mature for next-gen composites

Development spans 3D and thermoplastic nanocomposites, nano-CMCs for hypersonics and nanomaterials safety and toxicity.

Read More
Construction

5G-enabled smart cities bring opportunities for pultruded composites

A recent report explores the utility of radio frequency-transparent pultruded composite materials for integrating 5G mobile networks into urban infrastructure.

Read More
Recycling

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More