SGL Carbon to build composite battery enclosures for North American automaker
The company will produce carbon and glass fiber-based composite top and bottom layers for battery enclosures.

Source | SGL Carbon
SGL Carbon (Wiesbaden, Germany) reported on Jan. 13 that it has received a contract from a North American automaker for high-volume serial production of carbon and glass fiber-based composite top and bottom layers for battery enclosures, with production expected to begin the end of this year. The carbon fibers and fabrics, and the assembled components, will come from SGL Carbon’s fully integrated value chain.
The battery enclosure is a key part of an electric car’s chassis platform, the company says. Typically, this enclosure occupies most of the space in the underfloor of the chassis, and has specific requirements for weight, stiffness, impact protection, thermal management, fire protection, and water and gas impermeability. SGL Carbon says composite materials meet these requirements better than any other materials.
This contract follows the successful production of composite battery case prototypes for Chinese automotive manufacturer NIO announced last year.
The company says there is also the potential for more orders with this manufacturer for even more substantial volumes. In addition, SGL Carbon announces that it has also won a smaller volume contract from a European sports car manufacturer to serially produce bottom layers made of composite, to begin mid-2020, with more potential customers in electric car manufacturing in development.
“Driven by the increasing need for [electric cars] worldwide and thus for new flexible chassis platforms, our composite battery enclosures are a very promising new application in our product portfolio,” says Sebastian Grasser, head of the automotive segment at the Composites – Fibers & Materials business unit at SGL Carbon. “The recent contract wins show that our approach of developing custom-made solutions based on our integrated value chain offers an excellent value proposition.”
Related Content
-
Welding is not bonding
Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.
-
3D-printed CFRP tools for serial production of composite landing flaps
GKN Aerospace Munich and CEAD develop printed tooling with short and continuous fiber that reduces cost and increases sustainability for composites production.
-
Sulapac introduces Sulapac Flow 1.7 to replace PLA, ABS and PP in FDM, FGF
Available as filament and granules for extrusion, new wood composite matches properties yet is compostable, eliminates microplastics and reduces carbon footprint.