ÂÌñÏׯÞ

Published

Re-Wind Network successfully installs repurposed wind blade pedestrian bridge

The Ireland-based, five-meter-long BladeBridge solution has undergone extensive materials and mechanical testing to ensure application suitability.

Share

On Jan. 26, the  — comprising the University College Cork, Queens University Belfast, Georgia Tech and Munster Technological University (MTU) — announced the successful installation of a wind blade pedestrian bridge (BladeBridge) in Cork, Ireland, with remaining landscaping, removal of shoring platform underneath and handrail assembly to be completed shortly. The structure is one of two repurposed end-of-life (EOL) wind blade solutions initially designed and rendered in its fall 2021 Re:Wind Design catalogue, and was additionally designed to have the capacity and width to carry maintenance or emergency vehicles. Completion of the second demonstration, a wind blade power pole (BladePole) located in Kansas is planned for summer 2022.

The BladeBridge was originally funded in 2019 under the Irish Government Department of Transport’s “Project Ireland 2040” initiative, one of many opportunities identified by MTU to build a blade bridge on a long-distance pedestrian and cycle route in the Midleton-Youghal Greenway, a location which is under development by Cork County Council to improve rural development, tourism and public health. It uses two repurposed LM 13.4 wind blades from Nordex (Rockstock, Germany) N29 turbines originally donated by Everun Ltd. (Belfast, Northern Ireland) for its main girders. The remaining tip of the of the blade is embedded into the ground. 

BladeBridge fabrication in the shop. 

Final installation required experimental testing, computational modeling and design work to ensure the fiber-reinforced polymer (FRP) wind blades were suitable for use as girders for a short-span pedestrian bridge. Out of a total of eight blades donated by Everun, five were placed temporarily in storage, two were kept for the BladeBridge fabrication and one was delivered to the MTU structures laboratory for testing. 

Extensive materials and mechanical testing, such as resin burnout tests (conducted in accordance with ASTM D2584 (ASTM 2011)) to determine how the material properties varied along the length of the blade, and mechanical testing in tension and compression were performed. Additionally, a four-point edgewise bending test was carried out on a four-meter section of the wind blade to evaluate its load-carrying behavior. 

Software was also developed by the Re-Wind team called “BladeMachine” used to generate the engineering properties of the blade at multiple sections along the blade length. Preliminary designs considered architectural and structural requirements, including different orientations and placements of the wind blades (below deck, cable-stayed, etc.), connecting the stringers and deck to the blades and aesthetic details including the guardrail design, deck height, blade length and construction materials.

BladeBridge assembly underway in the field.

“This project would not have been possible without the vision and the enthusiastic support of the Cork County Council,” says Larry Bank, industry-academic outreach, The Re-Wind Network. “The Re-Wind Network is immensely proud of our Irish team at MTU and UCC led by Kieran Ruane and Angie Nagle.”  

Related Content

Molds/Tools

3D-printed CFRP tools for serial production of composite landing flaps

GKN Aerospace Munich and CEAD develop printed tooling with short and continuous fiber that reduces cost and increases sustainability for composites production.

Read More
Aerospace

Manufacturing the MFFD thermoplastic composite fuselage

Demonstrator’s upper, lower shells and assembly prove materials and new processes for lighter, cheaper and more sustainable high-rate future aircraft.

Read More
ATL/AFP

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More
Automotive

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More

Read Next

Focus on Design

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Aerospace

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More