MATECH’s FAST technology achieves ultra-high density C/C composites
Targeting demanding hypersonic missile applications and ballistic reentry, the patent-pending process increases C/C composite ablation and oxidation resistance by 20 times.
FAST densification process for C/C composites. Photo Credit, all images: MATECH
(Westlake Village, Calif., U.S.) has announced the creation of ultra-high density (UHD) carbon-carbon (C/C) composites using its novel field-assisted sintering technology (FAST). FAST enables C/C composites with an ablation and oxidation resistance 20 times greater than today’s “off the shelf” C/C composites, the company contends. Applications include nose tips and leading edge components for demanding hypersonic missile applications and ballistic reentry.
This patent-pending technolgy extends MATECH’s prior work using FAST for the densification of SiC/SiC and C/SiC ceramic matrix composites (CMC) in <10 minutes (U.S. patents 10,464,849 and 10,774,007). Now, through its new process, C/C composite bulk densities in excess of 2.20 gram/cubic centimeter (g/cc) have been demonstrated, approaching the absolute theoretical density of graphite (2.26 g/cc). In addition, extensive fiber pull-out upon fracture has been documented. FAST C/C composites are readily scaleable for nose tips and leading edge components for hypersonic missile applications. In addition, MATECH notes that the process is safe, inexpensive and relatively easy.
MATECH ultra-high density C/C composite (UHDCC) bulk density comparison.
This is unlike high-density carbon-carbon (HDCC) composites originally pioneered for ballistic reentry nose tips in the 1960s and 1970s, developed using the hot isostatic pressure impregnation carbonization (HIPIC) process. Despite routinely producing bulk densities of 1.95 g/cc, HIPIC was considered dangerous, expensive and difficult.
MATECH is formally announcing its patent-pending developments during a Jan. 23rd session at the 47th Annual Composites, Materials & Structures (CMS) Conference in St. Augustine, Florida.
Read more about FAST, “A new era for ceramic matrix composites.”
Related Content
-
Bombardier begins manufacture of Global 8000 business jet
Ultra-long range business jet featuring CMC-intensive engine and a range of 8,000 nautical miles is set to enter service in second half of 2025 as it remains on track for flight testing.
-
New CMC turbine vanes successfully tested in wind tunnel
SiC/SiC ceramic matrix composite (CMC) inlet guide vanes for a high-pressure turbine are aimed for a geared turbofan and show promise for more efficient aeroengines with less weight and need for cooling.
-
SRI develops scalable, infiltration-free ceramic matrix composites
Work in two DOE projects is demonstrating C/C-SiC produced in 3-5 days with <5% shrinkage, <10% porosity and 50% the cost of conventional C/C and C/C-SiC.