ÂÌñÏׯÞ

Published

Indiana Manufacturing Institute breaks ground

The Indiana Manufacturing Institute (IMI) is part of a $50 million project where Purdue University will advance research of composites manufacturing.

Share

More than 200 people attended a groundbreaking ceremony for the Indiana Manufacturing Institute, which is part of a $50 million project where Purdue University researchers will advance research of composite materials manufacturing to develop more energy-efficient technologies.

The 62,000-ft2 institute, which is slated to open in mid-2016, is part of a $259 million U.S. Department of Energy (DOE) initiative to support President Obama's National Network for Manufacturing Innovation. The DOE project, called the Institute for Advanced Composites Manufacturing Innovation, is a five-year, public/private collaboration that includes a federal commitment of $70 million and $189 million pledged by industry, state economic development agencies and universities. The University of Tennessee in Knoxville is the lead institution in the collaboration that includes public and private agencies in Indiana, Illinois, Kentucky, Michigan, Ohio, Tennessee and Colorado.

"Purdue’s selection to host this facility confirms our university as an international leader in composite materials research, and the work that will be done there will produce world-wide value in more lighter-weight energy efficient products,” said Purdue president Mitch Daniels.

"Indiana led the nation in advanced manufacturing job growth last year, an industry that represents 25% of our state’s economy," says Victor Smith, Indiana Secretary of Commerce. "Led by Purdue, our state’s participation in this initiative will continue to strengthen that foundation, supporting our highly- skilled workforce and creating opportunity for future corporate research partners while developing technologies to advance composite materials and conserve energy at the global level."

R. Byron Pipes, the John Leighton Bray Distinguished Professor of Engineering, will lead Purdue's Design, Modeling and Simulation Enabling Technology Center to be housed in the institute.

"The research conducted by faculty, staff and students in the institute will be structured to serve advanced composite materials R&D, and collaborating with the many industries using these technologies is a seamless transition," Pipes said. "That is because advanced composite materials have broad, proven applications because of their lightweight properties and proven strength and durability while also remaining elastic. The Boeing 787 commercial airplane is a wonderful example of what this technology can achieve."

The institute will engage Purdue faculty, including about 10 engineers and a number of graduate students, to work in the research areas that will initially occupy up to 30,000 ft2 in the Purdue Research Park-based facility.

 "The research and educational opportunities through this advanced composite materials initiative will serve a great benefit for both our faculty and students," said Leah Jamieson, John A. Edwardson Dean of Engineering. "Not only will it generate opportunities for sponsored research in this core development area, but our students will have even greater educational, internship and career prospects."

In partnership with the Indiana Economic Development Corporation, an expenditure of almost $35 million in research equipment and materials in the institute is expected over the next five years, funded through a cooperative agreement with the DOE.

Purdue Research Foundation will invest $11 million in the construction of the building, which will be located at the corner of Challenger Avenue and Yeager Road on property that is partly owned by the City of West Lafayette Redevelopment Commission and is being donated to the Purdue Research Foundation by the commission. The foundation already owns the remainder of the land for the development.

Related Content

NDT

Automated robotic NDT enhances capabilities for composites

Kineco Kaman Composites India uses a bespoke Fill Accubot ultrasonic testing system to boost inspection efficiency and productivity.

Read More
Aerospace

Aurora reveals latest SPRINT X-Plane design concept

An Aurora and Boeing team advances its high-speed, vertical lift concept to the preliminary design phase, which features three lift fans, a more refined composite exterior and an uncrewed cockpit.

Read More

Optimized rib-reinforced hollow composites via printed molds

Addyx topology optimization and water-soluble mandrel enables simultaneous rib and skin layup for one-shot, high-strength, lightweight structures.

Read More
Thermoplastics

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More

Read Next

Glass Fibers

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Recycling

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Plant Tours

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More