Cygnet Texkimp and University of Manchester develop 3D winding technology
The machine is based on a 9-Axis robotic winding concept and winds carbon fiber into lightweight parts for automotive and aerospace markets.
Advanced engineering company Cygnet Texkimp (Northwich, UK) and The University of Manchester (Manchester, UK) announced in early July they have developed a machine that winds carbon fiber into lightweight parts for automotive and aerospace.
The 3D Winder is the world’s first robotic 3D winding machine capable of making complex parts such as fuel pipes, cant rails and aeroplane wing spars. According to Cygnet Texkimp, it can also be adapted to produce components for other markets including wind blades for the energy sector.
The technology is the result of a two-year Innovate UK (Swindon, UK) Knowledge Transfer Partnership (KTP) between the Northwich-based manufacturer and The University of Manchester’s School of Materials to develop a new way of manufacturing composite components cost-effectively in high volumes and at high speeds.
The machine is based on the 9-Axis robotic winding concept first developed by the University’s Professor Prasad Potluri and uses a technique known as filament winding. It works by laying down carbon fibers much more quickly than traditional methods such as braiding and weaving, with trials showing it has the potential to wind an aircraft spar in just a few minutes. The technology was further developed at Cygnet Texkimp’s R&D center.
The company is now using a production-scale version of the 3D Winder to carry out advanced trials with international part manufacturers.
Related Content
-
The potential for thermoplastic composite nacelles
Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
-
Otto Aviation launches Phantom 3500 business jet with all-composite airframe from Leonardo
Promising 60% less fuel burn and 90% less emissions using SAF, the super-laminar flow design with windowless fuselage will be built using RTM in Florida facility with certification slated for 2030.