CGTech joins NIAR to support ATLAS research
CGTech's AFP/ATL programming and simulation software will be used to support ATLAS aerospace composites research at the National Institute of Aviation Research.
CGTech (Irvine, Calif., U.S.), the developer of VERICUT CNC simulation, verification and optimization software, joins Wichita State University’s National Institute of Aviation Research (NIAR; Wichita, Kan., U.S.) to participate in the Automated Technologies Laboratory for Advanced Structures (ATLAS). ATLAS investigates the development of manufacturing protocols for automated fiber placement (AFP) and automated tape laying (ATL) for aircraft systems.
The partnership between CGTech and NIAR is intended to combine VERICUT’s programming and simulation capabilities for AFP and ATL with ATLAS’s advanced robotics capabilities, including a thermoplastics-capable Coriolis (Queven, France) robot and an Electroimpact (Mukilteo, Wash., U.S.) AFP robot.
“Working with NIAR will help leverage our expertise in AFP and ATL manufacturing,” says Andre Colvin, CGTech’s composites product manager. “Together with the ATLAS program, we will advance the capabilities of advanced automated composites manufacturing.”
ATLAS provides a facility for manufacturers to research advanced manufacturing concepts using various machines, software and processing options. The university recently received a $2 million grant contract from the U.S. Economic Development Association to develop and demonstrate advanced composite material manufacturing technology. Since 1988, CGTech’s VERICUT software has been the industry standard for simulating CNC machining.
"Partnership with CGTech enables us to develop a multi-disciplinary manufacturing environment and an engineering education program to prepare engineers and educators for the Factory of the Future and to aid the current workforce in seamlessly adapting to advancements in the workplace.,” says Dr. Waruna Seneviratne, director of ATLAS.
Related Content
-
Airborne delivers composite upper stage tank for EU ENVOL project
Nine-member consortium targets development of low-cost, green vertical orbital launcher with manufacture of an ultra-lightweight composite tank design in an automated manufacturing environment.
-
The basics of composite drawing interpretation
Knowing the fundamentals for reading drawings — including master ply tables, ply definition diagrams and more — lays a foundation for proper composite design evaluation.
-
Proving thermoplastic composites match carbon fiber/epoxy performance in road bikes
CDCQ, LxSim, Addcomp and Argon 18 collaborate to optimize a carbon fiber/PA6 bike seat post, democratizing AFP and demonstrating materials and process for future designs and production.