Beyond Gravity to supply ULA with composite payload fairings, adds to Amazon satellite contract
Beyond Gravity will deliver 38 carbon fiber payload fairings, in addition to Amazon CFRP dispenser contract, for Project Kuiper, expands U.S. production facility capacity.
Rendering of the first ULA Vulcan launch with Amazon Kuiper satellites. Photo Credit: Amazon, Beyond Gravity
In mid-March this year, (formerly RUAG Space, Zürich, Switzerland) was awarded a contract to develop and deliver the carbon fiber-reinforced polymer (CFRP) dispenser system for Amazon’s planned satellite constellation. Now, (ULA, Centennial, Colo., U.S.) has also awarded Beyond Gravity the contract to supply 38 carbon fiber payload fairings for its Vulcan rockets (more about the payload fairings below), which are being used to deploy the Amazon satellites.
Project Kuiper aims to provide affordable, high-speed broadband connections around the world via a 3,236-satellite constellation placed into low Earth orbit (LEO).
“I am proud that the Vulcan launch vehicles that will carry the Kuiper constellation into space rely on our leading-edge and proven technology in the field of composite structures,” André Wall, CEO of Beyond Gravity, says. “This contract with ULA marks the next chapter in our long-standing partnership and further strengthens and expands our presence in the U.S.”
The 38 shipsets Beyond Gravity is providing to ULA comprise three composite structures, which include a carbon fiber payload fairing (the top of the launch vehicle protecting the satellites on their way into orbit), the heat shield that protects the launch vehicle from the heat generated by the engine during launch and an interstage adapter that interfaces to the launcher’s upper stage. To handle this volume, Beyond Gravity is doubling its production capacity in the U.S. and is working with ULA to build a new manufacturing facility at its site in Decatur, Ala., U.S., by early 2024, creating 200 additional jobs; this is in addition to new ground for a new production facility in Linköping, Sweden (see “RUAG rebrands as Beyond Gravity, boosts CFRP satellite dispenser capacity”).
The new building measures more than 250,000 square feet of space, including 30,000 square feet of warehouse along with 20,000 square feet for offices. “With this new facility, Beyond Gravity will move to the next level: From producing a total of 10 payload fairings in Decatur per year to a target of 25,” Paul Horstink, who heads the Launchers Division as executive vice president, states: “Also, Beyond Gravity’s workforce in the U.S. will grow from just over 200 today to an expected 400 employees.”
Since 2015, ULA and Beyond Gravity have had a strategic partnership for the production of composite structures for the Atlas V rocket as well as the Vulcan Centaur launch vehicle (see “ULA, RUAG Space extend and expands Atlas and Vulcan Centaur rocket programs cooperation”).
Beyond Gravity also has a strong history in providing composite components, structures and expertise for other space applications, including the most recent OneWeb satellite launch, the NASA Artemis missions and the flight of the Vega-C rocket.
Related Content
Plant tour: Airbus, Illescas, Spain
Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.
Read MoreBladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts
HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.
Read MoreCarbon fiber, bionic design achieve peak performance in race-ready production vehicle
Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.
Read MoreDevelopment of a composite liquid hydrogen tank for commercial aircraft
Netherlands consortium advances cryogenic composites testing, tank designs and manufacturing including AFP, hybrid winding, welding of tank components and integrated SHM and H2 sensors for demonstrators in 2025.
Read MoreRead Next
Ceramic matrix composites: Faster, cheaper, higher temperature
New players proliferate, increasing CMC materials and manufacturing capacity, novel processes and automation to meet demand for higher part volumes and performance.
Read MoreNext-gen fan blades: Hybrid twin RTM, printed sensors, laser shock disassembly
MORPHO project demonstrates blade with 20% faster RTM cure cycle, uses AI-based monitoring for improved maintenance/life cycle management and proves laser shock disassembly for recycling.
Read MoreUltrasonic welding for in-space manufacturing of CFRTP
Agile Ultrasonics and NASA trial robotic-compatible carbon fiber-reinforced thermoplastic ultrasonic welding technology for space structures.
Read More