ÂÌñÏׯÞ

Published

3D-printed composite tail rotor gear box housing enhances Discovery super drone

CFP Technology teams with Flying-Cam to create 3D-printed, functional tail rotor actuators protection using Windform XT 2.0 composites and a powder bed fusion process.  

Share

Detail of Discovery’s tail rotor gear box housing. Photo Credit, all images: Flying-Cam

CRP Technology’s (Modena, Italy) long-term collaboration with unmanned airborne solutions developer  (Belgium) has resulted in the construction of the UAV Discovery’s tail rotor gear box housing — the main housing attached to the main tail boon. The flight-ready part is 3D-printed (powder bed fusion/PFB) using CRP’s Windform XT 2.0 composite material.

Discovery is a 75-kilogram maximum takeoff weight (MTOW) unmanned single-rotor helicopter. It is Flying-Cam’s newest, largest and most versatile system so far with increased endurance features. Fully integrated state-of-art sensors were carefully chosen to match the platform quality for a variety of applications ranging from entertainment, homeland security, earth monitoring and high-precision remote sensing generally.

“With the potential drones offer the civil market, and the interest in beyond visual line of sight [BVLOS] flights, we felt it was the right time to develop a drone that could not only capture beautiful imagery for movies, television shows and commercials, but that could carry a variety of payloads to collect the necessary data for other industrial applications,” Emmanuel Previnaire, founder and CEO of Flying-Cam, says.

The aim of the “super drone” project was to create a lightweight yet rigid physical and aerodynamic protection for the tail rotor actuators and the GPS antenna. Flying-Cam opted for CRP Technology’s proprietary high-performance Windform Top-Line range of composite materials, particularly Windform XT 2.0, a carbon fiber-filled polyamide-based 3D printing composite especially suitable in demanding applications for such a sector as motorsports, aerospace and UAV.

Flying-Cam’s Discovery during flight. 

The material replaced the previous formula of Windform XT in the Windform Top-Line family of materials for PBF created by CRP Technology, featuring improvements in mechanical properties including +8% increase in tensile strength, +22% in tensile modulus and a +46% increase in elongation at break.

“The component was planned to be clamped on the tail boom, and also support the carbon [fiber] plate used as a tail rotor ground protection,” Previnaire notes. “For this reason, a good stress resistance was needed. We  chose Windform XT 2.0 as it allows us to achieve a good weight-resistance ratio.” Moreover, the mechanical and thermal properties of Windform materials are strictly connected to the characteristics of the 3D printing process. 

“The most innovative aspect in enlisting the 3D printing process and composite materials supplied by CRP Technology, is the free shape design, important for aerodynamic purpose, as well as the ability to create complex wiring channels inside with strong attachment points, in one unique piece,” Previnaire underlines. “More specifically, the PBF process and Windform materials are said to enable the creation of hollow parts with a lot of functional details, such as fixation nuts integration, cable attachment points.”

“We started collaborating with CRP Technology many years ago, for the realization of SARAH 3.0, our electric vertical takeoff and landing [eVTOL] unmanned aerial system, now replaced by SARAH 4.0,” Previnaire adds. “CRP Technology 3D printed the airframe structure, air guide cooling system, tail unit and main battery connection.”

SARAH, as well as Discovery, is reported to be a cutting-edge “unmanned aerial intelligence” solution and only possible by mastering all the technologies and skills involved.

CW Tech Days: High-Temp Composite Solutions

Related Content

Aerospace

Aurora reveals latest SPRINT X-Plane design concept

An Aurora and Boeing team advances its high-speed, vertical lift concept to the preliminary design phase, which features three lift fans, a more refined composite exterior and an uncrewed cockpit.

Read More

Improving carbon fiber SMC simulation for aerospace parts

Simutence and Engenuity demonstrate a virtual process chain enabling evaluation of process-induced fiber orientations for improved structural simulation and failure load prediction of a composite wing rib.

Read More
Out of Autoclave

Bladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts

HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.

Read More
Automotive

ASCEND program completion: Transforming the U.K.'s high-rate composites manufacturing capability

GKN Aerospace, McLaren Automotive and U.K. partners chart the final chapter of the 4-year, £39.6 million ASCEND program, which accomplished significant progress in high-rate production, Industry 4.0 and sustainable composites manufacturing.

Read More

Read Next

Additive Manufacturing

Autonomous, electric shuttle retrofitted with CRP Technology Windform materials

Advanced 3D printing production process and Windform composite materials used to manufacture the required motor cover and washer reservoir flap valve components, account for Olli 2.0’s pod-like shape.

Read More
Additive Manufacturing

CRP Technology highlights Windform RS composite material for powder bed fusion processes

Polyamide-based carbon fiber-filled composite provides enhances functionality, flexibility and speed in developing intricate 3D-printed parts.

Read More
Aerospace

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More