Stewart Mitchell Contributing Writer

Stewart Mitchell is a Bristol, U.K.-based engineering journalist with experience covering technology in Formula 1, electric and hybrid powertrain and autonomous systems. He has a degree in motorsport engineering from Oxford Brookes University
(Oxford, U.K.), and is a member of The Institution of Mechanical Engineers (London, U.K.).

Curing

Hybrid composite architecture enables rigid wind propulsion solution for maritime decarbonization

GT Wings’ AirWing leverages aerospace engineering principles combined with hybrid glass and carbon fiber composite construction to deliver up to 30% fuel savings through compact, deck-compatible wind propulsion.

Watch
Recycling

Oligomer polymer engineering transforms 100% recyclable thermoplastic composite paradigms

MET-OL thermoplastic technology alters high molecular weight polybutylene terephthalate into low-viscosity oligomers, enhancing fiber impregnation and catalytic repolymerization for fully recyclable, high-performance composites.

Read More
Glass Fibers

Thermoplastic composite pipes provide 59% reduction in H2 distribution CO2 emissions

Hive Composites’ multilayer thermoplastic composite pipe (TPC) design meets hydrogen permeation requirements while ensuring substantial CO2 reductions compared to conventional steel pipe systems.

Read More
Aerospace

ASCEND program completion: Transforming the U.K.'s high-rate composites manufacturing capability

GKN Aerospace, McLaren Automotive and U.K. partners chart the final chapter of the 4-year, £39.6 million ASCEND program, which accomplished significant progress in high-rate production, Industry 4.0 and sustainable composites manufacturing.

Read More
Pressure Vessels

Composite bipolar plates provide 81% improvement to hydrogen fuel cell power density

Ultra-thin CFRTP plates developed by Hycco achieve a 7.5 kilowatt/kilogram power density, high durability for fuel cells in long-flight drone and heavy-mobility applications.

Read More
Focus on Design

Pultruded CFRP chassis enables 36% payload increase for specialized commercial vehicles

CarbonTT’s quadraxial NCF composite chassis adds 185-kilogram capacity to Borco Höhns’ 3.5-ton Fiat Ducato market vehicle.

Read More

Carbon fiber/flax landing gear achieves 54% weight reduction via tailored layup optimization

Fuko’s Biogear showcases how strategic composite material distribution and natural fiber damping properties can lightweight and enhance critical aerospace structure performance.

Read More
Carbon Fibers

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Carbon Fibers

Bladder-assisted compression molding derivative produces complex, autoclave-quality automotive parts

HP Composites’ AirPower technology enables high-rate CFRP roof production with 50% energy savings for the Maserati MC20.

Read More

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Work In Progress

Ultra-thin woven fabric enables 90% resource reduction in satellite solar array manufacturing

Kerberos Engineering uses TeXtreme 0/90 woven fabrics for satellite solar array manufacturing, cutting weight and onboard resources, enhancing structural integrity and streamlining production.

Read More
Work In Progress

Laser-excited acoustics provide contact-free, nondestructive composites inspection

Xarion’s couplant-free NDT technology uses laser physics and a membrane-free optical microphone, eliminating the requirement for fluid coupling, widening the scope for NDT technology.

Read More