ÂÌñÏׯÞ

Published

The steadily growing list of IACMI resources

IACMI, the public-private composites consortium, is a little more than a year old and already has developed a strong collection of partnerships, facilities, equipment, software and material designed to help accelerate new technology development for the composites industry.

Share

The just-completed Indiana Manufacturing Institute at Purdue University will house the IACMI Design, Modeling and Simulation Technology Area, which aims to integrate major composites design software platforms to make composites design more efficient and robust.

The (IACMI; Knoxville, Tennessee), the public-private consortium designed to accelerate development of composite design, materials and processing technologies, is proving a dynamic and active organization, revealing at its July 28 meeting at Purdue University (West Lafayette, Indiana) that it is quickly expanding its collection composites-related manufacturing resources.

Dale Brosius, chief commercialization officer at IACMI and ÂÌñÏ×ÆÞ columnist, outlined at the meeting a host of completed and in-process facilities and equipment being installed or build with or for the consortium. First on the list was the Indiana Manufacturing Institute, located in the Purdue Research Park, which was just completed and will house the IACMI Design, Modeling and Simulation Technology Area. This 30,000-ft2 space will be used, among other things, to work on integration of major composites design software platforms from suppliers such as ESI, Dassault Systèmes, Altair, digimat, Moldex3D, Convergent and AnalySwift. The facility will also offer some fabrication capabilities, including a fused deposition modeling (FDM) machine.

At the University of Tennessee (UT; Knoxville), and opening Aug. 22, is the UT-IACMI Fiber and Composites Manufacturing Facility (FCMF), an 8,000-ft2 facility for industry collaboration and experiential learning. It will facilitate concept-to-prototype manufacturing and features equipment/machinery for process modeling, CAD, long-fiber compression molding, injection molding, vacuum diaphragm forming, low-pressure resin transfer molding (LP-RTM), compression molding, sheet molding compound (SMC), tooling, physical and mechanical testing and non-destructive evaluation (NDE).

In Colorado, at the National Renewable Energy Laboratory (Boulder), and supported by the Colorado School of Mines and Colorado State University, IACMI is developing the Composites Manufacturing and Education Technology Center (CoMET). This 10,000-ft2 facility, adjacent to the NREL wind blade test facility, will be used to conduct manufacdture of full-scale wind blade components, including roots, tips, spar caps and shear webs. This facility, which is expected to open in October 2016, will offer infusion, pultrusion, prepreg, RTM and hand layup capabilities. It will also provide assembly, bonding, finishing, NDE, structural testing and workforce capabilities.

In Michigan, in the Detroit neighborhood called Corktown, IACMI is developing what is informally known as the Corktown Facility. More formally, it will serve as a research, development and manufacturing scale-up center for IACMI's Vehicles Technology Area (VTA). Spearheaded by Michigan State University, the Corktown Facility will be in a building shared with Lightweight Innovations for Tomorrow (LIFT), a consortium that emphasizes metals development. The IACMI portion of the facility will feature several large pieces of machinery, including a Milacron 3,315-ton injection molding machine, a Schuler 4,000-ton compression molding machine, a KraussMaffei high-pressure RTM (HP-RTM) machine and a prepregger being donated by TenCate. The IACMI Corktown Facility is expected to up and fully functional by early 2018.

Finally, as was reported recently, IACMI has formalized a partnership with the Composite Recycling Technology Center (CRTC) in Port Angeles, Washington. CRTC, in partnership with Peninsula College, is working to convert scap prepreg into a usable fiber, and the IACMI partnership is expected to help accelerate market development for such material.

 

 

Related Content

Focus on Design

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More

Proving thermoplastic composites match carbon fiber/epoxy performance in road bikes

CDCQ, LxSim, Addcomp and Argon 18 collaborate to optimize a carbon fiber/PA6 bike seat post, democratizing AFP and demonstrating materials and process for future designs and production.

Read More

Carbon fiber, bionic design achieve peak performance in race-ready production vehicle

Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.

Read More
Work In Progress

ASCEND program completion: Transforming the U.K.'s high-rate composites manufacturing capability

GKN Aerospace, McLaren Automotive and U.K. partners chart the final chapter of the 4-year, £39.6 million ASCEND program, which accomplished significant progress in high-rate production, Industry 4.0 and sustainable composites manufacturing.

Read More

Read Next

Compression Molding

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More
Finishing & Fastening

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Carbon Fibers

Developing bonded composite repair for ships, offshore units

Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.

Read More