The Parker Solar Probe is pretty cool – thanks to carbon composite
Given the extreme temperatures of the Sun’s corona how can NASA’s Parker Solar Probe endure the region to carry out its mission to study our local star?
Like many people, this week past I’ve been obsessed with NASA’s solar probe. The Parker Solar Probe — named after solar science pioneer Professor Eugene Parker who developed theories on solar wind and the solar magnetic field in the mid-1950s — launched on Aug. 12 and will travel to the corona of the Sun to study the star and solar wind.
The probe will perform in situ measurements and imaging to study the corona. In order to endure the extreme temperatures in this region which reach approximately 2,500°F (1,377°C), the probe utilizes a 4.5-inch thick lightweight reflective shield. This Thermal Protection System (TPS) is made from carbon composite foam sandwiched between two carbon plates and coated with white ceramic paint on the sun-facing surface. The shield was designed by Johns Hopkins Applied Physics Laboratory (Laurel, Maryland, US) and built at Carbon-Carbon Advanced Technologies (Kennedale, TX, US).
Most of the probe’s instruments are tucked behind the TPS and sensors along the edge of the heat shield keep the spacecraft positioned correctly. Solar arrays that are used to power the craft can be retracted into the heat shield’s shadow for protection. A simple cooling system that operates by circulating about a gallon of water is also employed to keep the solar arrays and instrumentation cool.
Check out the NASA’s video to learn more about why the Parker Solar Probe won’t just melt in the extreme heat of the Sun.
Related Content
-
Low-cost, efficient CFRP anisogrid lattice structures
CIRA uses patented parallel winding, dry fiber, silicone tooling and resin infusion to cut labor for lightweight, heavily loaded space applications.
-
Plant tour: Aernnova Composites, Toledo and Illescas, Spain
RTM and ATL/AFP high-rate production sites feature this composites and engineering leader’s continued push for excellence and innovation for future airframes.
-
Development of a composite liquid hydrogen tank for commercial aircraft
Netherlands consortium advances cryogenic composites testing, tank designs and manufacturing including AFP, hybrid winding, welding of tank components and integrated SHM and H2 sensors for demonstrators in 2025.