ÂÌñÏׯÞ

Share

portable automated composite repair

GFM’s Portable Scarfing/Composite Repair System (PS/CRS) concept aims to enable portable, digitized inspection, scarfing and repair of large composite structures such as aircraft wings. New partnerships aim to offer customers a full range of training, transport and inspection options. Photo Credit: AGFM

American GFM (AGFM, Chesapeake, Va., U.S.), the U.S. branch of Austrian machine tool and composites manufacturing systems supplier GFM, has been developing automated and portable repair technology for composite aircraft and other parts since 2006. The newest iteration, called the Portable Scarfing/Composite Repair System (PS/CRS), will be powered by software from Wichita State University’s (WSU)  (NIAR, Kan., U.S.) to create a digital thread of repair data for a part and to use 3D scan data to inform the fabrication of a repair patch (for background and more on PS/CRS technology, see “Moving toward portable, digitized composite part repair”).

According to Frank Elliott, advanced initiatives coordinator at AGFM, the next step will be to move the PS/CRS from the prototype stage to customer use. In response to conversations with potential customers, AGFM has recently formed several partnerships to offer professional training on the PS/CRS system, and equipment for lifting the system onto an aircraft surface and supporting its weight during scarfing and repair.

 

Specialized composites repair training

composites repair training

Abaris Training Resources offers classes in traditional field repair processes for composite parts as well as a new course for training on AGFM’s automated system. Photo Credit: Abaris Training Resources

To help ensure companies are equipped to operate the PS/CRS system, AGFM has partnered with Abaris Training Resources (Reno, Nev., U.S.) to offer training on composite repair processes. This training will include general training on the basics of composite repair — scarfing, repair patches, manual field repair methods, techniques and repair via hot bonders, heat blankets or other heat sources — in addition to a new course offered covering AGFM’s automated processes.

 

Custom lift arm concept

The PS/CRS comprises a 5.4-foot x 5.4-foot x 4.75-foot frame that includes vacuum pods, a milling system with attached spindle unit, an electronic and CNC box, a vacuum dust extraction system and an optional non-destructive inspection (NDI) and/or scanning system. The overall system is intended to be portable — transportable to a field site for on-site scarfing and inspection, even on the wing of an aircraft itself.

lifting arm concept for composites repair module concept

This concept lifting arm system is designed to lift and support the PS/CRS directly onto an aircraft or other structure. Photo Credit: Field International Group

To make this possible, AGFM has partnered with global ground support equipment (GSE) supplier (Poole, U.K.) to create a specialized lifting arm system for transporting the PS/CRS onto an aircraft or other structure. The lift system will elevate the 320-pound PS/CRS frame to its proper location on an aircraft or other structure, and attach it to the part surface with vacuum pods.

The road-transportable concept involves a roughly 11-foot x 6-foot x 8-foot system consisting of a platform for holding the PS/CRS and a double boom with telescopic mast for lifting the PS/CRS on top of an airplane wing or fuselage, or to lift and support the PS/CRS upside-down underneath the wing for the duration of a repair.

 

Laser-based inspection and automated 3D scanning

In addition, AGFM has partnered with two suppliers to enhance its scarfing system with inspection and 3D scanning capabilities.

Aligned Vision (Chelmsford, Mass., U.S.) will offer its LASERVISION laser-based system, which is capable of automatic, in-situ inspection, verification and documentation of fiber orientation, foreign object debris (FOD) and material location, as well as projected layup guidance for composite repair. Elliott notes that the data collected by this system will feed into NIAR’s digital thread software.

LASERVISION can be run as a standalone system or integrated with the repair cell computer via PLC interface or through software development kit (SDK) integration.

laser inspection for composite part repair

Aligned Vision’s LASERVISION (pictured left) works with the PS/CRS for laser-based inspection and repair patch alignment. Zeiss’ T-Scan Hawk (right) provides 3D scanning for inspection or repair patch development. Photo Credit: Aligned Vision, Zeiss

In addition, Carl Zeiss Industrial Metrology LLC (Wixom, Mich., U.S.) will offer its T-Scan Hawk industrial 3D scanner to digitize the damaged surface area. The handheld manual laser scanner will be used by the operator on the work platform while the PS/CRS is being lifted and moved into place and attached to hte aircraft for repair. The T-Scan Hawk is said to enable fast, objective measurement on difficult part surfaces for either inspection or development of tooling or a repair patch. Elliott notes that AGFM has used Aligned Vision and Zeiss products successfully in its previous repair projects.

For more information, contact Frank Elliott at elliott@agfm.com or Jeswin Joseph, program and research manager at NIAR/WSU, at JeswinJoseph@niar.wichita.edu

microwire technology for composites

Related Content

Epoxies

Kaneka Aerospace announces epoxy-amine repair resin

Test results indicate that the two-part SR6400 resin achieves greater penetration into damaged areas of a composite and resorts laminate fracture toughness to the original state before damage.

Read More
Marine

Developing bonded composite repair for ships, offshore units

Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.

Read More
Glass Fibers

Composite wrap system combats corrosion in industrial tank repair

A fiberglass and carbon fiber composite wrap system enabled an Australian nickel mine to quickly repair a stainless steel ammonium sulphate feed tank and protect against future corrosion.  

Read More
Wind/Energy

Modec, Toray jointly develop FPSO, FSO repair solution using CFRP patches

CFRP patch technology will target localized pitting corrosion repairs for floating vessels used by the oil and gas industry, leading to minimal disruption and more streamlined repair.

Read More

Read Next

Aerospace

Moving toward portable, digitized composite part repair

Using digital twin technology, American GFM’s portable, automated inspection and scarfing system shows potential for on-site, data-driven composite aircraft part repair.

Read More
Pressure Vessels

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More
Compression Molding

VIDEO: High-volume processing for fiberglass components

Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.

Read More