Fully recyclable sandwich panel targets aerospace cabin interiors
CAMX 2024: Diab introduces sandwich panels that combine its structural foam core Divinycell F and thermoplastic skins, designed to meet current challenges in sustainability, REACH compliancy and more.
Share
Diab (DeSoto, Texas, U.S. and Laholm Sweden) has developed a new recyclable 100% thermoplastic sandwich panel for aerospace cabin interiors. The thermoplastic sandwich is designed to be a solution to current challenges such as sustainability, REACH compliance and a circular economy.
The solution combines the advantages of Diab’s structural foam core Divinycell F and thermoplastic skins. The materials used have been tested and qualified by aerospace OEMs, and are fully compliant with all industry requirements.
Diab’s sandwich panels for aerospace cabin interiors are made with a custom manufacturing process, including the skins,core bonds and shaping. This can also include decorative skins. Cabin interior panels are produced in a single-step process that yields 30-80% higher mechanical properties and fire resistance behavior than current honeycomb core and phenolic resin solutions, according to the company. The process also decreases weight by up to 10%, reduces production cycle time and reduces production costs by 20%.

Thermoplastic sandwich panels.
Divinycell F is a 100% thermoplastic Divinycell F core material that is already REACH-compliant. It is said to be recyclable and has a zero-waste production process. A sandwich core for commercial aircraft interiors, it is FST-compliant, has low sensitivity to water absorption, optimizes surface finish and reduces labor times. Another focus is its sustainability, which it offers through use of a recycled core.
Diab says it has demonstrated the recyclability of the panel with a process consisting in grinding the panel, then extruding recycled pellets and finally injection molding into 3D parts. Other recycling scenarios are said to be possible.
Related Content
-
Development of a composite liquid hydrogen tank for commercial aircraft
Netherlands consortium advances cryogenic composites testing, tank designs and manufacturing including AFP, hybrid winding, welding of tank components and integrated SHM and H2 sensors for demonstrators in 2025.
-
Eaton developing carbon-reinforced PEKK to replace aluminum in aircraft air ducts
3D printable material will meet ESD, flammability and other requirements to allow for flexible manufacturing of ducts, without tooling needed today.
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
Related Content
Development of a composite liquid hydrogen tank for commercial aircraft
Netherlands consortium advances cryogenic composites testing, tank designs and manufacturing including AFP, hybrid winding, welding of tank components and integrated SHM and H2 sensors for demonstrators in 2025.
Read MoreEaton developing carbon-reinforced PEKK to replace aluminum in aircraft air ducts
3D printable material will meet ESD, flammability and other requirements to allow for flexible manufacturing of ducts, without tooling needed today.
Read MoreCombining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
Read MorePlant tour: Collins Aerospace, Riverside, Calif., U.S. and Almere, Netherlands
Composite Tier 1’s long history, acquisition of stamped parts pioneer Dutch Thermoplastic Components, advances roadmap for growth in thermoplastic composite parts.
Read MoreRead Next
Diab reduces carbon footprint by 46%
Between 2016 and 2021, the sandwich composite solutions company made alterations in material, reduced waste and efficient use of waste, production and energy sources to drive its reduction efforts.
Read MoreLufthansa Technik, Diab develop greener composites for interior cabin components
Aeroflax flax fiber-based prepreg and one-step thermoplastic manufacturing process for 100% recyclable panels production pioneer lighter weight, reduce CO2 emissions.
Read MoreComposites end markets: New space (2025)
Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.
Read More