ÂÌñÏׯÞ

Published

Formable, reusable tooling achieves complex composite parts

CAMX 2024: Hawthorn Composites is displaying an inner and outer tail boom and a multi-chamber composite trailing edge control surface, enabled via its Smart Tooling solution.

Share

PAL-V layup. Source (All Images) | Hawthorn Composites and Smart Tooling 

Hawthorn Composites and Smart Tooling (Miamisburg, Ohio, U.S.) is exhibiting multiple displays — including a sub-scale trailing edge and tail booms — that demonstrate its ability to produce high-quality, complex composite parts with Smart Tooling.

The first display includes the inner and outer tail boom for the PAL-V Liberty flying car, made by Hawthorn Composites. The tail booms are complex geometry composite parts with trapped features and some high-tolerance requirements, developed using carbon fiber prepreg laid up on Smart Tools using laser guidance. Once layup was completed, the Smart Tools were placed into cure molds and cured in a conventional oven; Hawthorn says they act like bladders during cure and were pressurized to drive out air and compact the laminate during the cure cycle.

The second display is a sub-scale, multi-chamber composite trailing edge control surface that was a proof of concept (POC) project for Pilatus Aircraft Ltd. (Stans, Switzerland). Results led to Pilatus adopting a similar method of manufacture for making the control surfaces for its PC-24 business jet.

Pilatus trailing edge. 

The small trailing edge chamber of the control surface has an acute, knife edge angle that would traditionally be made using a fabricated foam core. For this POC control surface, however, the trailing edge chamber and the adjoining chamber were made using Smart Tools. The fabrication included laying up carbon fiber prepreg into a floating lid cure mold, laying up prepreg onto the Smart Tools and placing them into the cure mold. Once completed, cure was performed via autoclave.

The Smart Tooling technology enables a rigid, reusable, elastic and reformable mandrel that can ease the burden of layup, while still enabling simplicity of extraction from the cured, trapped or complex geometry composite part.

Related Content

Related Content

Aerospace

Welding is not bonding

Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.

Read More
Focus on Design

CirculinQ: Glass fiber, recycled plastic turn paving into climate solutions

Durable, modular paving system from recycled composite filters, collects, infiltrates stormwater to reduce flooding and recharge local aquifers.

Read More
Prepregs

Carbon fiber, bionic design achieve peak performance in race-ready production vehicle

Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.

Read More
Natural Fibers

Sulapac introduces Sulapac Flow 1.7 to replace PLA, ABS and PP in FDM, FGF

Available as filament and granules for extrusion, new wood composite matches properties yet is compostable, eliminates microplastics and reduces carbon footprint.

Read More

Read Next

ATL/AFP

Building a better tail boom

Out-of-autoclave carbon fiber/thermoplastic demonstrator is a 30 percent lighter drop-in replacement for an existing aluminum design.

Read More
Feature

RTM, dry braided fabric enable faster, cost-effective manufacture for hydrokinetic turbine components

Switching from prepreg to RTM led to significant time and cost savings for the manufacture of fiberglass struts and complex carbon fiber composite foils that power ORPC’s RivGen systems.

Read More
Pressure Vessels

Composites end markets: New space (2025)

Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.

Read More