AMRC installing UK's largest radial braider
The new radial triaxial braider will support the development of complex lightweight preforms for automotive, aerospace and other weight sensitive industries.

Source | AMRC
The largest radial triaxial braider in the UK is currently being installed at the University of Sheffield Advanced Manufacturing Research Centre (AMRC, Sheffield, UK) to support the development of complex lightweight preforms for automotive, aerospace and other weight sensitive industries.
The equipment, which is supplied by Herzog GMBH (Oldenburg, Germany), is part of a collection of state-of-the-art equipment purchased by the AMRC with funding from the Aerospace Technology Institute (ATI, Bedford, UK).
The giant 6m diameter braiding system paves the way for the development of manufacturing complex architectures and features with dry fiber technology, offering the ability to tailor orientations to suit structural requirements as well as allowing both off axis and axial fibers to be laid simultaneously at the deposition rates required for high volume manufacture.
A wide range of materials can be used with the radial braider including carbon, thermoplastic, glass, aramid and co-mingled tows. The Braider is also capable of processing ceramic fiber such as alumina and silicon carbide which would otherwise be difficult to process on a conventional braiding machine.
It has widespread application for components used in aerospace and automotive, helping with the production of fuel pipes and wing spars and numerous car body structure parts. It will also be available to support Dowty Propeller’s (Staverton, UK) multimillion pound Digital Propulsion project to develop future turboprop solutions.
Chris McHugh, Dry Fiber Development Manager at the AMRC Composite Centre, explains,
“The radial element is a primary feature of the braider as it means less fiber damage and more complex geometry is achievable due to the fact the fibers come down in a flat disc rather than a long cone. The machine is also six-axis with two robots. Quite often one robot is attached to a braider but the AMRC are putting two heavy duty robots either side of the braiding ring. The two 6-axis robots working in tandem means heavy parts and mandrels can be processed and not just foam cores. It is also able to handle more delicate or less stiff cores, due to the additional support.”
The technology, which is open to research projects for AMRC members, external companies and grant funded projects, can be combined with any of the other technologies at the AMRC, including the 1000T Rhodes press and KraussMaffei (München, Germany) RTM equipment.
Consultant engineer at the AMRC Composite Centre, Andy Smith, says,
“The advantage is it can be combined with other dry fiber technology as AMRC have the full process chain to generate parts to demonstrate industrial scale, high volume production. The AMRC was considering one of these braiding machines over ten years ago when the Composite Centre was starting out, it is technology they have wanted for a long time but it didn’t suit the market at that time, which was focused more on prepeg rather than dry fiber. With the setup of this machine, the braider has the potential to process delicate ceramic fibers for metal or ceramic matrix composites which have higher temperature capabilities and higher stiffness - making them suitable for military applications.”
The braider’s arrival follows the delivery of a 3D weaving loom and Jacquard currently under construction at the Composite Centre. Other cutting edge equipment includes through-thickness permeability testing, tailored fiber placement, a high temperature-high tension filament winder, tow-spreading machine and robotic end effectors for automated handling.
It will be used not only to manufacture preforms but also to develop the enabling technology for commercialization including joining, automation and impregnation.
The AMRC Composite Centre is on the lookout for companies to work with on collaborative research and development projects using the braiding system. Contact Chris McHugh by emailing c.mchugh@amrc.co.uk.
Related Content
Thermoplastic composites: Cracking the horizontal body panel nut
Versatile sandwich panel technology solves decades-long exterior automotive challenge.
Read MoreComposites end markets: Automotive (2024)
Recent trends in automotive composites include new materials and developments for battery electric vehicles, hydrogen fuel cell technologies, and recycled and bio-based materials.
Read MoreBraided thermoplastic composite H2 tanks with co-consolidated molded boss areas to fit EV battery space
BRYSON project demonstrates possible designs, automated manufacturing and low permeability concepts, including EVOH liner and novel PPA matrix.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MoreRead Next
“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MorePlant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
Read MoreComposites end markets: New space (2025)
Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.
Read More