A technological brake for the carbon supply roller coaster?
Henrik Olofsson is a co-founder and the business development manager of Oxeon AB (Västra Frölunda, Sweden). He holds an MS in mechanical engineering from Chalmers University of Technology and a BS in business economics and management from the School of Economics and Commercial Law, Gothenburg University (both in
I have followed with interest the discussions regarding affordable PAN-based carbon fiber supply. I believe there is a possible way to increase aerospace-grade carbon fiber output without making large investments in new production facilities.
As noted in previous issues of High-Performance Composites, the production mix is one of the most important factors affecting carbon fiber output. Fiber producers have to set off valuable resources to produce 6K, 3K and even 1K small tows instead of maximizing output by producing 12K. From discussions I've had with many industry players, I understand that the main reason to use a small tow is the thinner and lighter areal weight characteristics it brings to a woven fabric. Compared to a 12K woven fabric, a smaller tow fabric has the advantages of lower areal weight and less crimp (i.e., waviness) in the structure and, therefore, improved surface smoothness and better mechanical performance in a composite structure.
But a woven fabric made from fibrous tapes, instead of smaller tows or yarns, has those same advantages. Dr. Nandan Khokar, cofounder and R&D manager of Oxeon AB, during his work at Chalmers University of Technology (Gothenburg, Sweden), developed a patented weaving technology that processes 20-mm to 50-mm (0.79-inch to 1.97-inch) wide warp and weft spread carbon fiber tapes to produce fabrics. Large tows, such as 12K or 24K, are spread into flat tapes — the wider the spread, the thinner the tape, with a corresponding decrease in areal weight. When a woven reinforcement is made by weaving spread tows or tapes instead of standard tows, the incidence of crimp is significantly reduced. A test carried out by the University in partnership with the Swedish Institute of Composites (SICOMP) compared a traditional fabric produced from 3K tows and a tape-woven fabric produced from spread 12K tows. The mechanical performance of the tape fabric was shown to be better than the 3K fabric. Fiber properties of the 3K and 12K carbon were identical. Others have observed similar results and resulting improved performance, such as that presented at Aeronautics Forum at this year's JEC Composites Show in Paris, in "Thin Ply Technology for More Effective & Optimum Design." Presented by Stephen W. Tsai, professor emeritus of Stanford University, the paper was encouraging in that Prof. Tsai indicated qualification of spread tape woven materials is underway and may not be prohibitively expensive.
Several material suppliers have produced similar woven tape products and converted them into prepregs, including Cytec Engineered Materials Inc. (Tempe, Ariz.), Toray Composites America Inc. (Tacoma, Wash.) and Hexcel (Dublin, Calif.). Cytec's material, woven by Fabric Development Inc. (Quakertown, Pa.), was impregnated with a PEEK thermoplastic resin and used for landing gear doors and access panels on the F-22. Toray's T700S 12K plain-weave fabric has the same areal weight as a 3K fabric, and also is pre-impregnated with an epoxy resin and used extensively in the general aviation market. Hexcel's product is available as a 177°C-/350°F-cure prepreg. More recently, a Japanese company named Technomax has developed a method of spreading fibers with ultrasonic energy and weaving the resulting spread fibers in an economical way, with an eye toward producing recyclable thermoplastic prepregs.
Economically, the method holds promise if tows can be both spread and woven quickly and efficiently. Unlike traditional weaving, tape weaving requires no setting equipment and setup time is significantly reduced, in my experience. Production rates are higher because warp and weft tapes are four to ten times wider than 12K tow. More importantly, fiber producers can increase output using existing facilities by producing more 12K tows instead of the smaller sizes. The investment in a fiber spreading line is insignificant compared to investment in a new carbon fiber production plant. Fiber producers could spread the tows directly as they emerge from the spinerettes and thereby add greater value to the spread tow product without major capital investments.
I invite carbon fiber producers to consider this approach. It could not only help maintain consistent carbon fiber supply for the entire industry, but also improve mechanical performance of woven materials in high-performance applications using a lower-cost fiber. In this way we may be able to reduce the "roller coaster" effect of past fiber shortages and cost increases.
Related Content
Tool Gauge, Victrex partner to develop co-molded composite aircraft parts
Novel hybrid overmolding technology achieves novel thermoplastic composite parts to replace machined aluminum components on commercial aircraft, as well as reduce manufacturing costs and timeline.
Read MoreFormula 1 team adopts Roboze 3D printed composites
The Visa Cash App RB Formula 1 team is collaborating with Roboze to reduce weight and create parts with complex geometries via carbon fiber/PEEK.
Read MoreIn oil and gas, an additive manufacturing standard (API 20T) will aid adoption of composites
Polymer AM equipment maker Roboze sees how the oil and gas industry’s way forward with additive is like that of another high-stakes industry, aerospace, and also different in important aspects.
Read MoreClean Sky 2 OUTCOME project demonstrates PEEK thermoplastic composite wingbox cover
Airbus Defense and Space, FIDAMC and Aernnova demonstrate out-of-autoclave, one-shot process for wingbox cover with integrated stringers for regional aircraft.
Read MoreRead Next
Assembling the Multifunctional Fuselage Demonstrator: The final welds
Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.
Read MoreDeveloping bonded composite repair for ships, offshore units
Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.
Read MoreVIDEO: High-volume processing for fiberglass components
Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.
Read More