The meaning of next-generation
When the past becomes the present and the present becomes the future, the future starts looking a lot like the past. Got that?

Photo Credit: Getty Images
The composites industry likes the term “next-generation.” We use it to describe fighter jets, commercial aircraft, cars, trucks, software, raw materials and manufacturing processes. Next-generation implies creativity, innovation, novelty and forward-thinking. It also implies that the past is being left behind, along with all of the “old” ways of doing things. Such bipolarity can lead to some simplistic thinking — that composites history is antiquated and useless, while the next-generation-filled future is full of nothing but promise and hope.
CW might even be guilty of some of this thinking, given that we have titled this supplement “Next-Generation Materials and Processes.” Our intent was that we would shed light on some of the materials and process technologies that likely will be leveraged by composites fabricators being tasked with meeting the high-quality, high-rate standards that are and will be set by the industry’s customers over the next decade.
By that standard, we have a fair collection of stories here, covering additive manufacturing, thermoplastics, reprocessable thermosets, ceramic matrix composites, large aerostructures, virtual qualification and hydrogen storage.
But a funny thing happens when you are tasked with thinking about the materials and processes that represent the next generation of composites manufacturing: That bright line separating the antiquated past and the sparkling future gets pretty fuzzy pretty quickly. It becomes very difficult to point to a given material or process and declare it definitively in the past or in the future.
In any case, it is clear that the technologies leading us into the future are firmly rooted in the past, and that is how it should be.
Take, for example, liquid resin infusion. Is this a next-generation process? No, it’s been used in composites manufacturing for decades. But it’s being used today to produce large aerostructures and is a serious contender for high-rate manufacturing of single-aisle commercial aircraft. Doesn’t that qualify it as next-generation?
How about compression molding. Is this a next-generation process? No, it’s been used in composites manufacturing for decades. But it’s likely one of the enabling technologies for high-volume autocomposites manufacturing. Doesn’t that qualify it as next-generation?
We even talk about out-of-autoclave thermoset molding processes and thermoplastic composites as if they were just discovered, but both have enjoyed widespread use since the composites industry was born.
The truth is that the innovation the composites industry employs to create the next generation of materials and processes does not depend on developing something new and different, but adapting proven technologies to serve highly dynamic and demanding applications. And this is possible because composites materials and processes themselves are dynamic and highly adaptable — in many ways ideally suited to meet the fast-evolving needs of airframers, carmakers, boatbuilders, wind turbine manufacturers and much more.
Because of this, it sometimes seems like CW is constantly reporting on next-generation materials and processes. Just in 2020 alone, we have reported, among many topics, on complex FRP panels manufactured for a museum in Dubai, a novel wind blade design, infusion of integrated wing skins and stringers for a commercial aircraft, composites in the 2020 Corvette, highly automated RTM to fabricate aircraft spoilers, high-volume manufacture of highy aligned discontinuous fibers and composites use in wastewater treatment systems.
None of these applications involves use of materials and processes that do not have a long history in the composites industry. But they all demonstrate a concerted, creative effort to design and apply these materials and processes with greater efficiency and greater quality. And if that is the definition of “next generation” — efficiency with quality — that’s a good thing. In any case, it is clear that the technologies leading us into the future are firmly rooted in the past, and that is how it should be.
Related Content
What’s new for 2024?
ÂÌñÏ×ÆÞ discusses recent changes, upcoming events and strategies for the upcoming year.
Read MoreCelebrating National Composites Week
August 21-25, 2023 is National Composites Week. This year’s theme is “Composites Are Now,” recognizing the ways composites are shaping the world today.
Read MoreAchieving composites innovation through collaboration
Stephen Heinz, vice president of R&I for Syensqo delivered an inspirational keynote at SAMPE 2024, highlighting the significant role of composite materials in emerging technologies and encouraging broader collaboration within the manufacturing community.
Read MoreThe (not exactly) new guy at CW
Former CW writer and editor Scott Francis rejoins the brand as editor-in-chief as Jeff Sloan assumes the role of publisher.
Read MoreRead Next
Composites end markets: New space (2025)
Composite materials — with their unmatched strength-to-weight ratio, durability in extreme environments and design versatility — are at the heart of innovations in satellites, propulsion systems and lunar exploration vehicles, propelling the space economy toward a $1.8 trillion future.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MoreAssembling the Multifunctional Fuselage Demonstrator: The final welds
Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.
Read More