ÂÌñÏׯÞ

Published

Advanced composites — An idealized future

A CW columnist, a composites industry consultant and the chief commercialization officer for the Institute for Advanced Composites Manufacturing Innovation (Knoxville, TN, US), Dale Brosius imagines an ideal future for our industry then challenges us to make it real.

Dale Brosius , Contributing Writer, Institute for Advanced Composites Manufacturing Innovation (IACMI)

Share

Although we’re still awaiting the mass production of flying cars and miniature fusion reactors, some predictions in the 1985 film Back to the Future for 2015 have, indeed, come true. Among them are in-home videoconferencing and voice and fingerprint recognition for personal devices. 

On the 30th anniversary of the movie, the US Defense Advanced Research Projects Agency (DARPA) issued some predictions about the world in 2045. Some of them seem pretty far-fetched (click  for a look), but given the pace of technological development, they might be realized much sooner. So, what would an idealized future for the advanced composites industry look like? And rather than looking out 30 years, how about the next 10 to 20? Here are some of my thoughts:

“Make it and break it” is a thing of the past. Today’s “building block” approach to composites, from coupon level to full structures, is both time-consuming and expensive. As computing power evolves, the necessity to fabricate and test thousands of coupons to derive design allowables goes away. Instead, we manufacture a modest set of critical panels and measure a handful of mechanical properties, and use proven and reliable mathematical models to accurately predict the remaining design properties, called “virtual allowables.” Most important, we believe in them. From these, we are able to predict behavior of as-manufactured components and assemblies in impact, crash, fatigue and other potential failure modes, leading us to design parts at minimum weight and cost. We also characterize the rheology of the various polymers in composites, as well as forming behavior of fibers and textile forms to confidently simulate composite manufacturing processes.

Nondestructive evaluation (NDE) is no longer about “pass/fail.” In fact, NDE is only about making sure things are made correctly, so we no longer wait to sort out the good parts from the bad after all costs have been incurred. We’ve moved diagnostics further upstream into all the manufacturing processes that can impact final part quality, including base fiber and resin production. NDE now provides immediate, automated validation of ply sequences and fiber orientations during part layup or forming, as well as state of cure, resin flow, fiber wash and other parameters during the molding or curing stages. Validated, end-to-end simulation tools take information gathered by a variety of sensors and actually control manufacturing processes, predicting when a process is headed out of specification and then making automated, intelligent decisions: This might lead the machine to increase or reduce mold temperature or resin flow-rate setpoints upon sensing that a particular batch of resin is more or less reactive than the previous one. And this occurs without human intervention.

Efforts to minimize energy use, cycle time and process cost bear fruit. The manufacture of advanced composites structures, previously energy intensive, particularly for carbon fiber, which had very high embodied energy in solution spinning and oxidation of PAN polymers, is no longer. The vision’s a bit hazy here: Perhaps these are still PAN variants, or maybe they are modified polyolefins, or other polymers altogether, including bio-based. But we’ve designed precursor molecules that yield the strength and stiffness needed, yet can be melt spun and oxidized/carbonized at much greater energy efficiency. Thermoset curing and thermoplastic crystallization times have come down, enabling less than one-minute part cycle times with continuous fiber orientations. An increasing number of production parts are 3D printed, and this process has found wide use in the manufacture of rate tooling for all molding processes. In addition to polymer-based tooling, large-area additive manufacturing of metals and metal-matrix composites enables rapid, low-cost fabrication of high-temperature, high-strength molds.

Nearly 100% use and re-use of materials. Watching high levels of cutting scrap go into landfills is a thing of the past. “Buy/fly” ratios (applicable to aircraft structures, and per some colleagues, wind turbines) and “buy/drive” ratios (now a real term for vehicles) for materials procurement have moved close to 1:1, from historical 1.5:1 and higher levels. Large structures in aircraft have closed the gap via automated tape laying and fiber placement, and multiple technologies have done the same for parts with complex geometries, such as those in the auto industry. What in-plant offal we do generate (we no longer produce scrap parts — see NDE above) is immediately recycled into value-added components, perhaps as molding compounds. And at the end of life, we have cost-effective methods to recover and recycle the fibers and, hopefully, the resin as well, and to do so profitably.

All of the above areas are intertwined and all must move in parallel for this idealized future to occur. For that to happen, the best technologies will have to proliferate globally, and do so quickly. I believe it can be realized. Who’s with me? 

Related Content

Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Pressure Vessels

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Wind/Energy

Drag-based wind turbine design for higher energy capture

Claiming significantly higher power generation capacity than traditional blades, Xenecore aims to scale up its current monocoque, fan-shaped wind blades, made via compression molded carbon fiber/epoxy with I-beam ribs and microsphere structural foam.

Read More

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More

Read Next

Recycling

All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat

Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.

Read More
Aerospace

Assembling the Multifunctional Fuselage Demonstrator: The final welds

Building the all-thermoplastic composite fuselage demonstrator comes to an end with continuous ultrasonic welding of the RH longitudinal fuselage joint and resistance welding for coupling of the fuselage frames across the upper and lower halves.  

Read More
Plant Tours

Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Read More